


No Subject
Week 

(3 H/W)

1.

Introduction to control system:

 Introduction.

 Open Loop System.

 Close Loop System.

 Definitions.

 The engineering control problem.

1

Assist. Prof. Dr. Yousif Al Mashhadany 2– 8

Control Theory I
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2.

Mathematical Representation  of physical systems:

 Linear system, non linear system.

 transfer functions, Block diagram.

 electrical systems.

 mechanical translation system.

 mechanical rotational system.

 Thermal system.

 Modeling in state space.

 How to derive transfer function

from the state space equations.

 State space representation of dynamic

system.

3
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3.

Block diagrams Processing:

 Procedures for drawing a block diagram.

 block diagram reduction.

 closed loop system subjected to a disturbance.

 multivariable Systems, transfer matrices.
2

4.

Signal flow graphs:

 Signal flow graph representation of linear
system.

 Mason's gains formula for signal flow graph.

 Transfer function process in signal flow graph.

2
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5.

Transient response analysis:

 Test signals, impulse response function.

 first order system, higher order system.

 definitions of time constant, damping ratio and 

natural frequency.

 definitions of transient response specifications.

 impulse response, dominant poles.
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6.

Steady – state error in unity- feedback control 
system:

 Classifications of control systems.

 static position error coefficients.

 dynamic error coefficients.

2

7.

Routh’s Stability Criterion

 Introduction.

 Routh's Criteria Rules.

 Solved problem for Checking System Stability.

2
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Control Theory I Introduction to Control System

This Lecture will discuss the following subjects:

1) This lecture discusses the following topics :

2) Introduction.

3) Open Loop System

4) Close Loop System.

5) Definitions of control system.

6) The engineering control problem.

7) Solved Examples

8) Problems
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Control Theory I

1.1. Introduction:

Introduction to Control System

The toaster in Fig.1.1 can be set for the desired darkness of the

toasted bread. The setting of the ‘‘darkness’’ knob, or timer,

represents the input quantity, and the degree of darkness and

crispness of the toast produced is the output quantity. If the degree

of darkness is not satisfactory, because of the condition of the bread

or some similar reason, this condition can in no way automatically

alter the length of time that heat is applied. Since the output

quantity has no influence on the input quantity, there is no feedback

in this system. The heater portion of the toaster represents the

dynamic part of the overall system, and the timer unit is the

reference selector.
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Fig. 1.1 Open-loop control system automatic toaster

The dc shunt motor of Fig. 1.2 is another example. For a given

value of field current, a required value of voltage is applied to the

armature to produce the desired value of motor speed. In this case

Desired toast 
"Darkness setting"

the motor is the dynamic part of the system, the applied armature
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Control Theory I Introduction to Control System

voltage is the input quantity, and the speed of the shaft is the output

quantity. A variation of the speed from the desired value, due to a

change of mechanical load on the shaft, can in no way cause a

change in the value of the applied armature voltage to maintain the

desired speed. Therefore, the output quantity has no influence on

the input quantity.

1.2. Open Loop System:

Systems in which the output quantity has no effect upon the input

quantity are called open-loop control systems. The examples just

cited are represented symbolically by a functional block diagram,

as shown in Fig. 1.2.C. In this figure, (1) the desired darkness of the

toast or the desired speed of the motor is the command input, (2)
Assist. Prof. Dr. Yousif Al Mashhadany 5 - 35
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( b)

Fig. 1.2. Open-loop control system (a) electric motor; (b) 

functional block diagram.

A person could be assigned the task of sensing the actual value of 

the output and comparing it with the command input. If the output

does not have the desired value, the person can alter the reference-

selector position to achieve this value. Introducing the person 

provides a means through which the output  is feedback and is

Reference 
selector

Dynamic 
unit

OutputReference 
input

Command 
input
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Control Theory I Introduction to Control System

compared with the input. Any necessary change is then made in 

order to cause the output to equal the desired value.

1.3. Close Loop System:

The feedback action therefore controls the input to the dynamic

unit. Systems in which the output has a direct effect upon the input

quantity are called closed loop control systems. To improve the

performance of the closed-loop system so that the output quantity is

as close as possible to the desired quantity, the person can be 

replaced by a mechanical, electrical, or other form of a comparison 

unit. The functional block diagram of a single-input single-output 

(SISO)  closed-loop  control  system  is  illustrated  in  Fig.  1.3. 

Comparison between the reference input and the feedback signals
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results in an actuating signal that is the difference between these

two quantities. The actuating signal acts to maintain the output at

the desired value. This system is called a closed-loop control

system..

Feedback 
signal

Feedback 
element

Fig. 1.3. Functional block diagram of a closed-loop system

Reference 
selector

Forward 
Elements

Output

Reference 
input

Command 
input

Actuating 
signal

System 
dynamics
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The designation closed-loop implies the action resulting from the

comparison between the output and input quantities in order to

maintain the output at the desired value. Thus, the output is

controlled in order to achieve the desired value.

Examples of closed-loop control systems are illustrated in Figs.

1.4&1.5 . In a home heating system the desired room temperature

(command input) is set on the thermostat in Fig.1.4. (reference

selector).A bimetallic coil in the thermostat is affected by both the

actual room temperature (output) and the reference-selector setting.

If the room temperature is lower than the desired temperature, the

coil strip alters its shape and causes a mercury switch to operate a

relay, which turns on the furnace to produce heat in the room.

Assist. Prof. Dr. Yousif Al Mashhadany 18 - 35
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When the room temperature reaches the desired temperature, the

shape of the coil strip is again altered so that the mercury switch

opens. This deactivates the relay and in turn shuts off the furnace.

In this example, the bimetallic coil performs the function of a

comparator since the output (room temperature) is fed back directly

to the comparator. The switch, relay, and furnace are the dynamic

elements of this closed-loop control system.

A closed-loop control system of great importance to all multistory

buildings is the automatic elevator of Fig.1.5. A person in the

elevator presses the button corresponding to the desired floor. This

produces an actuating signal that indicates the desired floor and

turns on the motor that raises or lowers the elevator. As the elevator

Assist. Prof. Dr. Yousif Al Mashhadany 19 - 35
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approaches the desired floor, the actuating signal decreases in value

and, with the proper switching sequences, the elevator stops at the

desired floor and the actuating signal is reset to zero. The closed

loop control system for the express elevator in the Sears Tower

building in Chicago is designed so that it ascends or descends the

103 floors in just under1min with maximum passenger comfort.
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1st floor

Fig. 1.5. Automatic elevator.

2nd floor

3rd floor
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1.4. Definitions of control system.

From the above description there are many terms can be defined as:

Control Theory: It is that part of science which concern control 

problems.

Control Problem: If we want something to act or vary according to

a certain performance specification, then we say that we have a 

control problem. Ex. We want to keep the temperature in a room at

certain level and as we order, then we say that we have temperature 

control problem.

Plant: A piece of equipment’s the purpose of which is to perform a

particular operation (we will call any object  to be controlled a 

plant). Ex. Heating furnace, chemical reactor or space craft.
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The system: A combination of components that act together to

perform a function not possible with any of the individual parts.

The word system as used herein is interpreted to include physical,

biological, organizational, and other entities, and combinations

thereof, which can be represented through a common mathematical

symbolism. The formal name systems engineering can also be

assigned to this definition of the word system. Thus, the study of

feedback control systems is essentially a study of an important

aspect of systems engineering and its application.

Process: Progressively continuing operation or development

marked by a series of

Assist. Prof. Dr. Yousif Al Mashhadany 24 - 35
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gradual changes that succeed one another in a relatively fixed way

and lead towered a particular results or end. In this lectures we call

any operation to be controlled a process.

Reference  selector  (reference input element): The  unit that 

establishes the value of the reference input. The reference selector 

is calibrated in terms of the desired value of the system output. 

Reference input: The reference signal produced by the reference 

selector, i.e., the command expressed in a form directly usable by 

the system. It is the actual signal input to the control system. 

Disturbance input: An external disturbance input signal to the 

system that has an unwanted effect on the system output.
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Forward element (system dynamics): The unit that reacts to an 

actuating signal to produce a desired output. This unit does the 

work of controlling the output and thus may be a power amplifier. 

Output (controlled variable): The quantity that must be maintained 

at a prescribed value, i.e., following the command input without 

responding the disturbance inputs.

Open-loop control system: A system in which the output has no 

effect upon the input signal. Ex. heater, light, washing machine.

Feedback element: The unit that provides the means for feeding

back the output quantity, or a function of the output, in order to 

compare it with the reference input.
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Actuating signal: The signal that is the difference between the

reference input and the feedback signal. It is the input to the control

unit that causes the output to have the desired value.

Closed-loop control system: A system in which the output has an

effect upon the input quantity in such a manner as to maintain the

desired output value.

The fundamental difference between the open- and closed-loop

systems is the feedback action, which may be continuous or

discontinuous. In one form of discontinuous control the input and

output quantities are periodically sampled and discontinuous.

Continuous control implies that the output is continuously feedback

and compared with the reference input compared; i.e., the control
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action is discontinuous in time. This is commonly called a digital,

discrete-data or sampled-data feedback control system. A discrete

data control system may incorporate a digital computer that

improves the performance achievable by the system. In another

form of discontinuous control system the actuating signal must

reach a prescribed value before the system dynamics reacts to it;

i.e., the control action is discontinuous in amplitude rather than in

time. This type of discontinuous control system is commonly called

an on-off or relay feedback control system. Both forms

may be present in a system. In this text continuous control systems

are considered in detail since they lend themselves readily to a

basic understanding of feedback control systems. With the above
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introductory material, it is proper to state a definition of a feedback 

control system: ‘‘A control system that operates to achieve 

prescribed  relationships  between  selected  system  variables  by 

comparing functions of these variables and using the comparison to 

effect control.’’The following definitions are also used. 

Servomechanism (often abbreviated as servo): The term is often 

used to refer to a mechanical system in which the steady-state error 

is zero for a constant input signal. Sometimes, by generalization, it 

is used to refer to any feedback control system.

Regulator: This term is used to refer to systems in which there is a 

constant steady-state output for a constant signal. The name is
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derived from the early speed and voltage controls, called speed and 

voltage regulators.

Major advantages of open loop control system:

1. Simple construction and ease of maintenance.

2. Less expensive than the corresponding closed loop system.

3. There is no stability problem.

4. Convenient when output is hard to measure or economically 

not feasible.
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The disadvantages of open loop control systems are as follows:

1. Disturbances and changes in calibration cause errors and the 

output may be different from what is desired.

2. To maintain the required quality in the output, recalibration 

is necessary from time to time.

5. The engineering control problem:

In general, a control problem can be divided into the following 

steps:

1. A set of performance specifications is established.

2. The performance specifications establish the control 

problem.
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3. A set of linear differential equations that describe the

physical system is formulated or a system identification

technique is applied in order to obtain the plant model

transfer functions.

4. A control-theory design approach, aided by available

computer aided-design (CAD) packages or specially written

computer programs, involves the following:

a. The performance of the basic (original or

uncompensated) system is determined by application of

one of the available methods of analysis (or a

combination of them).
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b. If the performance of the original system does not meet

the required specifications, a control design method is

selected that will improve the system’s response.

c. For plants having structured parameter uncertainty, the

quantitative feedback theory (QFT) design technique

may be used. Parametric uncertainty is present when

parameters of the plant to be controlled vary during its

operation.

5. A simulation of the designed nonlinear system is performed.

6. The actual system is implemented and tested.
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Design of the system to obtain the desired performance is the

control problem. The necessary basic equipment is then assembled

into a system to perform the desired control function. Although

most systems are nonlinear, in many cases the nonlinearity is small

enough to be neglected, or the limits of operation are small enough

to allow a linear analysis to be used. This textbook considers only

linear systems. A basic system has the minimum amount of

equipment necessary to accomplish the control function. After a

control system is synthesized to achieve the desired performance,

final adjustments can be made in a simulation, or on the actual

system, to take into account the nonlinearities that were neglected.

A computer is generally used in the design, depending upon the

Assist. Prof. Dr. Yousif Al Mashhadany 34 - 35



Control Theory I Introduction to Control System

complexity of the system. The essential aspects of the control

system design process are illustrated in Fig.1.6. Note: The

development of this figure is based upon the application of the QFT

design technique. A similar figure may be developed for other

design techniques. The intent of (Fig.1.6) is to give the reader an

overview of what is involved in achieving a successful and

practical control system design.

Finally the following design policy includes factors that are worthy

of consideration in the control system design problem:

1. Use proven design methods.

2. Select the system design that has the minimum complexity.
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3. Use minimum specifications or requirements that yield a

satisfactory system response. Compare the cost with the

performance and select the fully justified system

implementation.

4. Perform a complete and adequate simulation and testing of

the system.
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1.6. Solved Examples

Example 1: Fig.1.7.a. is a schematic diagram of a liquid level

control system. Here the automatic controller maintains the liquid

level by comparing the actual level with the desired level and

correcting any error by adjusting the opening of pneumatic valve.

Fig.1.7.b. is the corresponding block diagram of the control system.
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Fig.1.7. (a) Liquid level control system. (b) corresponding B.D.

Pneumatic
valve

Inflow

Controller

outflow

-a-

Desired 
level

Controller
Water 
tank

Actual 
level

Feedback
element

Pneumatic 
valve

-b-
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To draw the block diagram for a human operated liquid level as an

example of closed loop control system we will need the following

parts (see Fig. 1.8):

1. Eyes as a sensor . 2. Brain  as a controller

3. Muscles as a pneumatic valve as in the following block 

diagram

Eyes

Fig.1.8. Block diagram of human operated liquid level control 

system

Desired 
level

Brain Water 
tank

Actual 
level

Muscles 
And valve
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Example 2. An engineering organization system is composed of

major groups such as management, research and development,

preliminary design, experiment, product design and drafting,

fabrication and assembling and testing. These groups are

interconnected to make up the whole operation. The system may be

organized by reducing it to the most elementary set of components

necessary that can provide the analytical detail required and by

representing the dynamic characteristics of each component by a set

of simple equations. The functional block diagram of the

engineering organization can be illustrated as in the block diagram

is shown in Fig. 1.9.
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1.7. Problems

Introduction to Control System

1. Give two examples of feedback control systems in which a 

human acts as a controller?

2. Explain the open-loop control system by functional diagram 

and describe the blocks by practical example?

3. Explain the closed-loop system by functional block diagram 

and compared it with open-loop control system?

4. Many closed-loop and  open-loop  control systems may be 

found in homes. List several examples and describe them?

5. Draw the general block diagram of control system and

explain each block in the sketch?

Assist. Prof. Dr. Yousif Al Mashhadany 35 - 35





Control Theory I Mathematical Representation of Physical Systems

This lecture discusses the following topics :

1.Introduction:

2. Electrical system.

3. Multiloop Electric Circuits.

4. State Space Concepts (S.S)

5. Transfer Function (T.F):

6.Correlation between transfer functions 

and state-space equations.
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7. Transfer Function From State-Variable Representation.

8. State Variable Representation From Transfer Function.

9. Properties of the State Transition Matrix:

10. Complex impedances.

11. Transfer function of nonloading cascaded system.

12. Mecanical Systems.

2.12.1.

2.12.2.

Translational mechanical systems 

Rotational mechanical systems

Assist. Prof. Dr. Yousif Al Mashhadany 46 134



Control Theory I Mathematical Representation of Physical Systems

13. Liquid systems.

14. Thermal systems.

15. Extra systems

2.15.1.

2.15.2.

2.15.3.

2.15.4.

Gear trains 

Potentiometer 

Error Detector

First-Order Op-Amp

2.16. Simulation diagram
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2.1. Introduction:

●Mechanical, electrical, thermal, hydraulic, economic, biological, 

etc, systems, may be characterized by differential equations.

●The response of dynamic system to an input may be obtained if 

these differential equations are solved.

●The differential equations can be obtained by utilizing physical 

laws governing a particular system, for example, Newton's laws for

mechanical systems, Kirchhoff's laws for electrical systems, etc.

Mathematical models: The mathematical description of the 

dynamic characteristic of a system. The first step in the analysis of

dynamic  system is  to  derive  its  model.  Models  may assume
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different forms, depending on the particular system and the

circumstances. In obtaining a model, we must make a compromise

between the simplicity of the model and the accuracy of results of

the analysis.

Transfer functions: The transfer function of a linear time-invariant

system is define to be the ratio of the Laplace transform ( z-

transform for sampled data systems) of the output to the Laplace

transform of the input (driving function), under the assumption that

all initial conditions are zero.

Example: Consider the linear time-invariant system
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aoy(n) a1y(n1) ......an1y. any box(m) b1x(m1) .....bm1x. bmx ,nm

Taking the Laplace transform of y(t)

(ao y(n) )  ao(y(n) )  ao[S nY (S )  S n 1y(0)  S n  2 y(0)  ...... y(n 1) (0)

(a1y(n1))a1(y(n1))ao[Sn1Y(S)Sn2y(0)Sn3y(0)...... y(n2)(0)

(a2y(n2))  a1(y(n2))  ao[S n2Y(S)S n3y(0)S n4 y(0)...... y(n3)(0)

.

.

(any)an(y)anY(s)
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same thing is applied to obtain the L.T. of x(t).by substitute all

initial condition to zero. The transfer function of the system

become.

boS
Transfer function =G(s) 

aoS n  a1S (n1)  ..... an1S  am

 b1S  ..... bm1S  bm
(m1)m

●Transfer function is not provide any information concerning the

physical structure of the system (the T.F. of many physically

different system can be identical).
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●The highest power of s in the denominator of T. F. is equal to the

order of the highest derivative term of the output. If the highest

power of s is equal to n the system is called an nth order system.

How you can obtain the transfer function (T. F.)? 

1- Write the differential equation of the system

2Take the L. T. of the differential equation, assuming all initial 

condition to be zero.

3 Take the ratio of the output to the input. This ratio is the T. F.
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In general, variables that are functions of time are represented by

lowercase letters. These are sometimes indicated by the form x(t ),

but more often this is written just as x. There are some exceptions,

because of established convention, in the use of certain symbols. To

simplify the writing of differential equations. The symbols D

and1/D are defined by:

dt
Dy dy(t) , D2 y  d y(t)

dt 2

2

00D1y  1 y   t y( )d  0 y( )d  t y( )d Y
0D  

Assist. Prof. Dr. Yousif Al Mashhadany 53 134





Control Theory I Mathematical Representation of Physical Systems

the applied voltage is equal to the sum  of the voltage drops when 

the switch  is closed:

VL VR  VC  e

(2.4)

LDi  Ri  i  e
CD

1

(2.5)

The circuit equation can be written in terms of the voltage drop

across any circuit element. For example, in terms of the voltage

across the resistor, VR = Ri, the equation become:
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v    e
RCD

 v  
L D
R RVR R

1

(2.6)

For LRC circuit in Fig.2.2.

Fig.2.2. Series Resistor–Inductor–Capacitor Circuit
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Applying Kirchhoff’s voltage law to the system shown. We obtain 

the following equation;

L  Ri   idt  ei
Cdt

(2.7)

di 1

 idt  eo

1

C

(2.8)

Above two equations give a mathematical model of the circuit.

Taking the L.T. of equations, assuming zero initial conditions, we

obtain:
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LSI(S)  RI (S)  I (S)  E (S)
1

CS i

I (S)  E (S)
1

CS
o

The final transfer function of the series RLC circuit will be as in the 

following equation :

E (S LCS 2  RCS 1

Eo (S)


1

i
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Loop Method: A loop current is drawn

(usually in a clockwise direction); then

equation is written for each loop:

in each closed loop 

Kirchhoff  ’s  voltage

(R1  )i1  R1i2   i3  e
CD CD

1 1

R1i1  (R1 R2 LD)i2 R2i3  0

 i  R i  (R  R  1 )i  0
1

2 2 2 3 3CD 1 CD
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The output voltage is Vo=R3 i3 These four equations must be

solved simultaneously to obtain Vo(t) in terms of the input voltage

e(t) and the circuit parameters.

Node Method: The junctions, or nodes, are labeled by letters in

Fig.2.4. Kirchhoff’s current equations are written for each node in

terms of the node voltages, where node d is taken as reference. The

voltage Vbd is the voltage of node b with reference to node d. For

simplicity, the voltage Vbd is written just as Vb.
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Fig.2.4. Multi node network

i1  i2 i3 0

 i3  i4  i5  0
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Since there is one known node voltage Va=e two unknown voltages

Vb and Vo, only two equations are required:

For node b and node c:

In terms of the node voltages, these equations are:

vb  va  CDV  vb  v0    0
R1 R2

b

(v   e)  0
v0  vb  

Vo V 
1

R2 R3 LD o

Rearranging the terms in order to systematize the form of the 

equations gives:
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R1 R2 R2 R1

( 1 
CD 

1 )V  v0   
e b

e

LD
1 V  ( 1  


1 


1 )V  

 LD R RR b 0

2 31

For this example, only two nodal equations are needed to solve for

the potential at node c. An additional equation must be used if the

current in R3 is required. With the loop method, three equations

must be solved simultaneously to obtain the current in any branch;

an additional equation must be used if the voltage across R3 is

required. The method that requires the solution of the fewest

equations should be used. This varies with the circuit.
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The rules for writing the node equations are summarized as 

follows:

1.The number of equations required is equal to the number of 

unknown node voltages.

2. An equation is written for each node.

3. Each equation includes the following:

(a) The node voltage multiplied by the sum of all the admittances 

that are connected to this node. This term is positive.
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(b) The node voltage at the other end of each branch multiplied by

the admittance connected between the two nodes. This term is

negative.

2.4. State Space Concepts:

Basic matrix properties are used to introduce the concept of state

and the method of writing and solving the state equations.

State: The state of a system is a mathematical structure containing a

set of n variables x1(t ), x2(t ), . . . , xi(t ), . . . , xn(t ), called the

state variables, such that the initial values xi(to) of this set and the

system inputs uj(t ) are sufficient to describe uniquely the system’s
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future response of t ≥ to. A minimum set of state variables is

required to represent the system accurately. The m inputs, u1(t ),

u2(t ), . . . ,uj(t ), . . . ,um(t ), are deterministic; i.e., they have

specific values for all values of time t ≥ to.

Generally the initial starting time to is taken to be zero. The state

variables need not be physically observable and measurable

quantities; they may be purely mathematical quantities. The

following additional definitions apply:
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State Vector: The set of state variables xi(t) represents the elements 

or components of the n-dimensional state vector x(t); that is,

X (t)  x3 (t)  x3   X

x 
n

x2 

x1 (t)  x1 

x (t)
n

x2 (t)


   

   

   

..

The order of the system characteristic equation is n, and the state

equation representation of the system consists of n first-order

differential equations. When all the inputs uj (t) to a given system

are specified for t> to, the resulting state vector uniquely

determines the system behavior for any t > to.
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State Space: State space is defined as the n-dimensional space in

which the components of the state vector represent its coordinate

axes.

State Trajectory: State trajectory is defined as the path produced

in the state space by the state vector x(t) as it changes with the

passage of time. State space and state trajectory in the two-

dimensional case are referred to as the phase plane and phase

trajectory, respectively.

The first step in applying these definitions to a physical system is

the selection of the system variables that are to represent the state

of the system.
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Note that there is no unique way of making this selection. The three

common representations for expressing the system state are the

physical, phase, and canonical state variables.

The selection of the state variables for the physical-variable method

is based upon the energy-storage elements of the system. Table 1

lists some common energy-storage elements that exist in physical

systems and the corresponding energy equations. The physical

variable in the energy equation for each energy-storage element can

be selected as a state variable of the system. Only independent

physical variables are chosen to be state variables.
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Independent state variables are those state variables that cannot be

expressed in terms of the remaining assigned state variables. In

some systems it may be necessary to identify more state variables

than just the energy-storage variables. This situation is illustrated in

some of the following examples, where velocity is a state variable.

When position, the integral of this state variable, is of interest, it

must also be assigned as a state variable.

For the circuit of Series RLC Circuit (Fig.2.2). This circuit contains

two energy-storage elements, the inductor and capacitor. From

Table 1, the two assigned state variables are identified as x1=Vc
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(the voltage across the capacitor) and x2=i (the current in the

inductor). Thus two state equations are required.

Fig 2.3 is redrawn in Fig. 2.4 with node b as the reference node.

The node equations for node a and the loop equations are,

respectively,

Cx.  x ; Lx .  Rx  x  u
2 2 2 1

Rearranging terms to the standard state equation format yields:

x .  
1 x  R x   1 u
L L L

x . 
1 x
C

22 1

1 2
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Table 2.1.Energy storage elements
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System Elemnet Energy Physical variable

Electrical Capacitor (C) Voltage (v)

Inductor (L) Current (i)

Mechanical Mass (M) Translational velocity 

(v)

Moment of inertia (J) Rotational velocity 

(w)
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Equation (2.13) represents the state equations of the system

containing two independent state variables. Note that they are first-

order linear differential equations and are n=2 in number. They are
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Spring (K) Displacement (x)

Fulid Fluid compressibility 

( 

Pressure (PL)

Fluid capacitor C=ρA Height (h)

Thermal Thermal capacitor C Temperature (ϴ)
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the minimum number of state equations required to represent the

system’s future performance.

State equation. The state equations of a system are a set of n first-

order differential equations, where n is the number of independent

states.

The state equation represented by Eq(2.12)is expressed in matrix

notation as:

  
 1 u1

 
L 

1/ L  R / Lx2 

x 0 1/ C
.

X 2 

.

X .  0 

  
1 (2.14)
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The standard form of the state space equation is:

X .  Ax  Bu

In this case ,the matrix A which is the system matrix will be :

A=   , nxn plant coefficient matrix
1/ L  R / L

0 1/ C  

Matrix B ,which is input matrix will be :

0 

B= 1  ,
 
L 

nx1 control matrix

and, in this case, u=[u] is a one-dimensional control vector.
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In ( X .  Ax  Bu ), matrix A and x are conformable. If the output

quantity y(t) for the circuit of Fig.8 is the voltage across the

capacitor vC, then

y(t)  vc  x1

Thus the matrix system output equation for this example is:

y(t) Cx Du  [1  0]  [0]u
x2

x1
(2.15)

Where
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C is the output matrix with 1xn dimension for single input single 

output system (SISO),

D is the forward matrix =0.

For a multiple-input  multiple-output  (MIMO) system,  with  m 

inputs and l outputs, these equations become:

X .  Ax  Bu ; y Cx  Du ; 

Where: A = n × n plant or system matrix

B = n × m control or input matrix ; C = l × n output matrix

D = l × m feed forward matrix
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2.5. Transfer Function (T.F):

If the system differential equation is linear, the ratio of the output 

variable to the input variable, where the variables are expressed as 

functions of the D operator, is called the transfer function.

Consider the system output vC=y in the RLC circuit of Fig.2.1 

substituting i=CDvC  into Eq( LDi+Ri+1/CD i=e), yields: 

(LCD2+RCD+1)vc;(t)

The system transfer function is:

u(t) e(t) LCD2  RCD 1
G(D)  y(t)


vc (t)


1
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The notation G(D) is used to denote a transfer function when it is

expressed in terms of the D operator. It may also be written simply

as G.

The block diagram representation of this system (Fig.2.6)

represents the mathematical operation G(D)u(t)=y(t); that is, the

transfer function times the input is equal to the output of the block.

The resulting equation is the differential equation of the system.

Fig.2.6. Block diagram representation.

G(D)u(t) y(t)
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Note: sometime used the symbol (s) instead of (D) and transfer

function becomes writing as (G(s)) and D≡s and D2≡s2 ……, and

the equation (2.16) will write as:

LCS 2   RCS 1

1
G  (2.17)

The program by using Matlab to change between the two forms for

representation of control system ( State Space and Transfer

Function ) can be shown below;

% The change in form from SS to TF is:
Cy=1;Ly=10;Ry=100;

A=[ 0 /Cy -1/Ly -Ry/Ly ];
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B=[0 1/Ly]; 

C=[1 0];

D=[0];

[num,den]=ss2tf(A,B,C,D)

% The change in form from TF to SS is:

numc=[0 0 1];

denc=[Ly*Cy Ry*Cy 1]; 

[AA,BB,CC,DD]=tf2ss(numc,denc)

In the Matlab/Simulink can be done as in the Fig. 2.7.
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2.6. Correlation between transfer functions and state-space 

equations

The following full derivation of transfer function of SISO system 

from the state-space equations. Let us consider the system whose 

transfer function is given by:

G(s)  Y (s)
U (s)

This system may be represented in state space by the following 

equations:

X .  Ax  Bu ; y Cx  Du
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Where : x is the state vector ,u is the input and y is the output. The 

Laplace transform of the equation 2 is given by:





sx(s)  x(0)   Ax(s)  Bu(s)

Y (s)  Cx(s)  Du(s)

(2.20) Since the transfer function is previously defined as Laplace

transformation of the output to the input with zero initial

conditions, we assume that x(0)=0,then we have

sx(s)  Ax(s)  Bu(s) or (SI  A)X (s)  BU (s)

Multiplying (SI A)1 to both sides of the last equation we will

obtain
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X (s)  (SI  A)1 BU (S)

Substitute (2.21) in (2.20) we get

Y(s) [C(SI  A)1 BD]U(s)

So that the transfer function of the system represented by state 

space will be:

G(s) Y(s) /U(s) [C(SI  A)1BD]

The right hand side of equation (2.23) involves (SI A)1 .Hence 

G(s) can be written as

G(s)  Q(s) / | (SI  A) |
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Where Q(s) is a polynomial in s .Therefore, | (SI  A) | is equal to the

characteristic polynomial of G(s).in other words ,the Eigen values

of A are identical to the poles of G(s).

Fig.2.8. Block diagram of state equation and output equation
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From Fig.2.8. can be written the following states equations:

x1   y0u

x   y .  u .   u  x.     u
2 0 1 1 1

 1u   x 2  2ux  y ..  u .. 

3 0

. .

 x n1 n1ux   yn1  un1  un2  ............ u .  u
n 0 1 n2 n1

.

Where 0 ,1 ,2 ,n  are determined from

0  b0
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1  b1 a10

2 b2 a11 a20

3 b3 a12 a21 a30

.

.

n bn a1n1 an2n2 .....an0

With this choice of state variables, the existence and uniqueness of 

the solution of the state equation is guaranteed. (Note that this is not
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the only choice of a set of state variables). With the present choice 

of state variable, we obtain

x 1   x2 1u
.

x 2  x3  2u
.

x n1   xn  n1u
.

x n  an x1 an1x2  ...... a1xn   nu
.

In  term of vector matrix  equations, the output equation  can  be 

written as
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u

 a1 x .
n  

1  x .
n1

0 x   

0 x2

0 x11 0 0

0 1 0

0 0 1

0 0 0

 an1  an2  an3

0

 anx .
n

x n1

x .
3

x 2

x 1

 
n

n1 
 


 
1    

2

 




 

 




3



  0
0

0



 

 


 . 

 



3

.

.

y 1 0 x3 
 0u

x .
n

x .
n1 

 

 
x2 

x1


000  





Or
X   AX 

BU Y  CX 

DU

.
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Where

x.
n1

 


X  x  A  0

x2 
 



x1


 3

x
.
n

1  
 a1


0  , B  

0  2

0 


0
 an



0

0


1 0 0

0 1 0

0 0 1

0 0 0

 an1  an2  an3
 
 n    

n1
 




 
1    

3

0]000C  [1

D  0  b0

Note that the state space representation for the transfer function is
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nU (s) sn  a sn1  a sn2   a
 0 1 2 nY (s) b sn b sn1 b sn2 b

21

Example (1): Obtain the state equations for the circuit of Fig.2.9.

The output is the voltage v1.The input or control variable is a

current source i(t). The assigned state variables

are i1 , i2 , i3 , v1 , and v2 , ?
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Fig.2.9. Circuit of Example 4.

Solution:

Three loop equations and two node equations are written:

v1  L1Di1 or v  L
1  dt

di1
1
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v2 L2Di2 v1

v2  L3Di3 i2 C1Dv1 i1;

i  i3 C2Dv2  i2  ; L3i3  L2i2 L1i1 K

2 u
1/ C 

X  

1/ L

1/ L1


1/ L

 (L  L ) / C L L / C L

1/ C11/ C1

X .  

 0 


 

0 

0





0
0



0

0

0

0

0

0

0

22

2 3 2   31 2   3

y1 0 X00
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2.7. Transfer Function from State-Variable Representation:

Having established the conditions for the equivalence of the state-

variable representation with that of the transfer-function, we are

interested to find one representation from the other by finding their

relationship. Let us consider first the problem of determining the

transfer function of a system given the state variable representation

X .(t)  Ax(t)Bu(t)

y(t)  Cx(t)

since the transfer-function representation is expressed in the

frequency domain, we begin by taking the Laplace transform of
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both equations, assuming as usual in transfer-function 

determination that the initial conditions on x are all zero.

SX  AX (s)  BU (s) Y (s) CX (s);

Grouping the two X(s) terms in Equation (2.24) we have

(sI – A)X(s) = BU(s)

where the identity matrix has been introduced to allow the indicated

multiplication compatible. Now, pre-multiplying both sides of the

above equation by (sI – A)-1, we get

X(s) = (sI – A)-1 BU(s)
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We substitute this result in Equation (2.25) to obtain

Y(s) = C(sI – A)-1 BU(s)

Comparing this relation between Y(s) and U(s) with the Equation 

(Y(s) = G(s)U(s))

we find that the transfer function matrix G(s) as: 

G(s) = C(sI – A)-1 B

For the single input-single output case, this result reduces to

G(s) = c′(sI – A)-1 b
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The matrix (sI – A)-1   is commonly referred to as the resolving 

matrix and is designated by φ(s),

φ(s) = (sI – A)-1

In terms of this notation the Equations become

G(s) = C φ(s) B and G(s) =c′ φ(s) b (2.26)

Example (2): Consider the system represented by the equations
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x(t)  u(t)
1

0

7 10

1  0
x. (t)  

y(t)1 0x(t)

The matrix (sI – A) in this example becomes




1  0  0 1 s 1 
    

0  1 10 7 10  s 7
s

Its inverse is found as

s  7 1

det(sI  A) s 2   7s 10
10  s

(s)  (sI  A)1 
adj(sI  A)



 
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Hence, transfer function will be as

s 2   7s 10 s 2   7s 10

1s1 

s  7 10

10
[1 0]

G(s)  c'(s)b  (sI  A)1 

 

In the above example, we observe that the determinant of the

matrix (sI – A) is equal to the denominator polynomial of G(s).

This is always true for single input - single output systems.

Although Equation (2.26) provide a direct method for determining

the transfer function of a system from a state-variable

representation of the system, it is generally not the most efficient

method.
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2.8. State Variable Representation from Transfer Function:

In Section 2.6 we have shown how to get the transfer function

model of a linear continuous system when its state-variable form is

available. We shall now take up the issue of getting the state-

variable model when the transfer function model is available. Since

the state-variable representation is not unique, there are,

theoretically, an infinite number of ways of writing the state

equations. We shall present here one method for deriving a set of

continuous state variable representation from the transfer function.

Analogous procedure may be followed for writing the continuous
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state equation from pulse transfer function in  S domain. The 

transfer function of single-input-single-output system of the form:

1 0sn2   .......b s bn2
sn1 b

n1

G(s)  n1 n2 1 0sn2   ...... a s  asn1  a

sn b

a

Can be written ,after introducing an auxiliary variable E(s) as

U(s) s  bn1s bn2s  .......b1s b0 E(s)
* E(s) an2s  ...... a1s  a0G(s)  Y(s)


n n1 n2

n2n1an1s

We let now

Y (s)  (a sn1  a sn2  ...... a s  a )E(s)
n1 n2 1 0
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U(s)  (sn b sn1 b sn2  .......b s b )E(s)
n1 n2 1 0

From Theorem of Laplace transform, we note the following

relations between the variables in the s domain and time domain

with zero initial conditions

E(s)  e(t)

sE(s)e.(t)

s2E(s)e..(t)

Under this correspondence we define the state variables

x1(t)e(t)
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x (t)  x .(t)  e.(t)
2 1

x (t)  x .(t)  e..(t)
3 2

.

.

x (t)  x .(t)  en1(t)
n n1

From above two Equations group we obtain the state equations

x 1(t)  x2(t).

x 2 (t)  x3 (t)

x 3(t)  x4(t)

.

.

.
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x n (t)  xn (t)  b0 x1(t)b1x2 (t)b2 x3 (t)bn1xn (t)u

In matrix notation this becomes

.

0 x   0u

bn1x .
n

1 x .
n1

 

0 x2

0 x11 0 0

0 1 0

0 0 1

0 0 0 0

b0   b1 b2 b3
x .

n

 
x .

n1 
 

x .
3

x 2

x 1

0
1

 

0
 
0




 






3



  0
0

0





 . 

.

In compact form, it is written as :

x’(t) = A x(t) + Bu(t) ;  The output equation is obtained from as 

which may be written compactly a s y(t) = Cx(t)
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Hence the last two Equations are a set of state equations for the

continuous system described by transfer function. Another

convenient and useful representation of the continuous system is

the signal flow graph or the equivalent simulation diagram. These

two forms can be derived, after dividing both the numerator and

denominator of first Equation by sn :

U(s) s  bn1s bn2s  .......b1s b0 E(s)
* E(s) an2s  ...... a1s  a0G(s)  Y(s)


n n1 n2

n2n1an1s

From this expression we can get two equations

Y (s)  (a sn1  a sn2  ...... a s  a )E(s)
n1 n2 1 0
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U(s)  (sn b sn1 b sn2  .......b s b )E(s)
n1 n2 1 0

The above equation can be rewritten as follows

E(s) U(s)b s1E(s) b s2 E(s) .......b s1n E(s)b sn E(s)
n1 n2 1 0

Example (3): Let us consider a single input single output system of 

the last Example which is reproduced below for quick reference:

 ,b    ,c 1
7 

 0 1 
A 

10 1

0 0, d 0 0
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We are interested to find its solution with initial condition x′(t0) =

x′(0) = [0 0] and unity step input u(t) = us(t). The resolving matrix

φ(s) given by relation (φ(s) = (sI – A)-1 ) is written as :

s  7 1

det(sI  A) s 2   7s 10
10  s

(s)  (sI  A)1 
adj(sI  A)



 


s 

s 2  7s 10

s 2  7s 10 


 10
 s 2  7s 10

(s)  
 s 2  7s 10
 s  7 1
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 )
3  s  5 s  25 

1 ( 5 2 


 )
3  s  2 s  5 



 3  s  2


s  5
10 ( 1 1 )

(s)  
3
1 ( 5


s  2 s  5

1 ( 1 12 )



1 (5e 5  2e 2 ) 


(1e 1e ) 
3



 3
10 (1e 2 1e 5 )

(t)  
3

(5e 2e )
1 2 52 5

3

1

Substituting the value of x'(0)=[0 0] and unit step input in the 

equation we get
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11  

 (5e5(t )  2e2(t ) )d

0



 (1e2(t )  1e5(t ) )d 


 3 0



x(t)  (t )bu()d 10 t

3 0


1 t

 (1e2(t )  1e5(t ) )d

 (5e2(t )  2e5(t ) )d

3 0

3 0

1 t

0
t

t

5t 



3

1 e2t 
1 e5t

  

 1

 e  e

(5e5(t ) 2e2(t ) )d 







 3 


x(t)  10 t

3 
1 t

(1e2(t ) 1e5(t ) )d 2t

3 
t

00

0

3

10 6 15

11

1

Therefore y(t) is computed as y(t)=cx(t)+du(t)

y(t)  1 


1 e2t 
1 e5t ,t  0

10 6 15
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9. Properties of the State Transition Matrix:

Some useful properties of the state transition matrix φ(t) are 

recorded below :

1. (0)  eA0  I (identity matrix)

2. (t)  eAt   e(  At ) (t) 1  or (t)1 1(t) (t)
1 

3. (t  t )  eA(t1t2)  eAt1.eAt2   (t )(t ) (t )(t )
1 2 1 2 2 1

4.  ((t))n (nt)

5. (t1 t2)(t2 t3) (t1 t3)for any t1, t2, t3
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E i (s) Z1 (s)  Z 2 (s)

Z 2 (s)E0 (s)


Where

Z1(s) LsR ; Z2 (s) 
Cs

1

Z (s)  E(s) / I

Hence the T.F. Eo(s)/Ei(s) can be found as follows;


1 

LCs2   RCs 11

Cs

1

Cs
E (s)

E0 (s)


Ls R i

Assist. Prof. Dr. Yousif Al Mashhadany 72 - 134





Control Theory I Mathematical Representation of Physical Systems

ei    (i1  i2 )dt  i1R1
C1

1

0   (i i )dt  i dt  2
C C  22  1 2

21

11
i R

e0    i2dt
C2

1

By taking the L.T. for the above equation:

E(s) i   (I1 (s)  I 2 (s)  I1 (s)R1
C s1

1

(2.27)
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0  (I 2 (s)  I1 (s)  I 2 (s)I 2 (s)R2
C s C s21

11 (2.28)

E (s)  I (s)
1

0 2C2 s

By using Eq(2.27), we get:

C1s[E(s)i  I1(s)R1] I1(s)I2 (s) (2.29)

From Eq’s(2.28)&(2.29) we get:

*  1 [I (s)  I (s)]
R C s 1  C s

I (s)  1 2

2    2 1

C2 s
2
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The transfer function of Eo(s)/Ei(s) can written in term of I2(s) as 

follow:

Ei (s) (R1C1s 1)(R2C2s 1)  R1C2 s

E0 (s)


1 (2.30)

The term R 1 C 2 s in the denominator of the transfer function

represents the interaction of two simple RC circuits .since (R 1 C1

+R 2 C 2 +R 1 C) > (4R 1 C1R2C2) the two roots of the denominator of

equation (2.30) are real. The present analysis show that if two RC

circuits are connected cascade so that the output from the first

2
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circuit is the input to the second, the overall transfer function is not

the product of 1/(R 1 C 1 s+1) and 1/(R 2 C 2 s+1).

The reason for this is that when we derive the transfer function for

an isolated circuit, we implicitly assume to be infinite which means

that no power is being withdrawn at the output. when the second

circuit is connected to the output of the first , however, a certain

amount of power is with –drawn and thus assumption of no loading

then violated therefore if the transfer function of this system is

obtained under the assumption of no loading then it is not valid .

The degree of the loading effect determines the amount of

modification of the transfer function.
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2.11. Transfer functions of non-loading cascaded elements

The transfer function of a system consisting of two no loading

cascaded elements can be obtained by eliminating the intermediate

input and output. For example consider the system shown in

Fig.2.12.a. The transfer functions of the elements are:

X 1 (s) X 2 (s)
G (s)  X 2 (s) and G (s)  X 3 (s)

1 2

If the input impedance of the second elements is infinite, the input

of the first element is not affected by connecting it to second

element. Then transfer function of whole system becomes:

G(s)  X 3 (s)


X 2 (s) X 3 (s)

X 1(s) X 1 (s) X 2 (s)
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Fig. 2.12. (a) System consisting of two non-loading cascaded 

elements; (b) an equivalent system.

The transfer function of whole system is thus the product of transfer

functions of the individual elements. This is shown in Fig.2.12.b.as

an example, consider the system shown in Fig.2.13,the insertion of

an isolating amplifier between the circuits to obtain non-loading

characteristics is frequently used in combining circuits. Since the

amplifier has very high input impedance, an isolation amplifier

X1(s)
G1(s) G2(s)G1(s) G2(s)

X2(s) X3(s) X3(s)X1(s)

(a) (b)
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Example (5): Armature-Controlled dc motors

The dc motors have separately excited fields. They are either

armature controlled with fixed field or field-controlled with fixed

armature current. For example, dc motors used in instruments

employ a fixed permanent-magnet field, and the controlled signal is

applied to the armature terminals. Consider the armature-controlled

dc motor shown in the following Fig.2.14.

Ra = armature-winding resistance, ohms 

La = armature-winding inductance, henrys 

ia = armature-winding current, amperes
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if = field current, a-pares ; ea = applied armature voltage, volt

eb = back emf, volts; θ = angular displacement of the motor shaft, 
radians

T = torque delivered by the motor, Newton*meter

J = equivalent moment of inertia of the motor and load referred to 
the motor shaft kg.m2

f = equivalent viscous-friction coefficient of the motor and load 
referred to the motor shaft. Newton*m/rad/s
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T K1ia ; Where

 is the air gap flux,   K f i f ,kf  is constant

T  K1ia K f i f

For a constant field current

T  Kia ,k is a motor torque constant

eb  k2

For constant flux
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b  dt
e  k  d , k is back emf constant ; The armature circuit equation isb b

La  Raia  eb   ea

dia

dt

The armature current produces torque which is applied to the both 

inertia and friction  to rotate the motor, hence

 f  T  kia
dt

d 2 d

dt
J

Taking the Laplace transform of the above three equation with 

assuming all initial condition is zero
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Eb (s) Kbs(s)

LasIa (s)RaIa (s)Eb (s)  Ea (s)

(LasRa )Ia (s)Eb (s)  Ea (s)

Js 2  fs T  KI (s)a

(Js2  fs) T  KI (s)a

The transfer function can be obtained as:

Ea (s) s(La Js   (La f  Ra J )s  Ra f  KK b

equation

 (s) K


2
Try to check this
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The torque T developed by the motor is proportional to the product 

of the air gap flux ψ and armature current ia so that

T K1ia , k1 is constant

T  K2i f , k2  is constant

R f i f   e f

di f   
dtfL ;

 f  T  k f i f
dt

d 2 d

dt
J
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Taking the Laplace transform of the above three equation with 

assuming all initial condition is zero

(Lf sRf )I f (s)  E f (s)

(Js   fs) T  K2I f (s)2

The transfer function can be obtained as

Ea (s) s(L f s  R f )(Js  f )

(s) 


K2 Try to check this equation

H.W. Find  the transfer function
I f (s)

(s)
and

I f (s)

E (s)f
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2.12. Mechanical Systems:

Mechanical systems obey Newton’s law that the sum of the forces

equals zero; that is, the sum of the applied forces must be equal to

the sum of the reactive forces. The three qualities characterizing

elements in a mechanical translation* system are mass, elastic, and

damping. The following analysis includes only linear functions.

Static friction, Coulomb friction, and other nonlinear friction terms

are not included. Basic elements entailing these qualities are

represented as network elements, and a mechanical network is

drawn for each mechanical system to facilitate writing the

differential equations. The mass M is the inertial element. A force
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f
(c)

a c

b
(a)

d
(b)

applied to a mass produces an acceleration of the mass. The

reaction force fM is equal to the product of mass and acceleration

and is opposite in direction to the applied force. In terms of

displacement x, velocity v, and acceleration a, the force equation is

e

K BM

fm  Ma  MDv  MD x2

Fig. 2.16. Network elements of mechanical translate.
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The network representation of mass is shown in Fig. 2.16.a.One

terminal, a, has the motion of the mass; and the other terminal, b, is

considered to have the motion of the reference. The reaction force

fM is a function of time and acts ‘‘through ’’M. The elastance, or

stiffness, K provides a restoring force as represented by a spring.

Thus, if stretched, the string tries to contract; if compressed, it tries

to expand to its normal length. The reaction force fk on each end of

the spring is the same and is equal to the product of the stiffness K

and the amount of deformation of the spring. The network

representation of a spring is shown in Fig.16b. The displacement of

each end of the spring is measured from the original or equilibrium

position. End c has a position xc, and end d has a position xd,
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measured from the respective equilibrium positions. The force 

equation, in accordance with Hooke’s law, is

fK   K(xc xd )

If the end d is stationary, then xd =0 and the preceding equation

reduces to: fK   Kxc

The plot fk vs. xc for a real spring is not usually a straight line,

because the spring characteristic is nonlinear. However, over a

limited region of operation, the linear approximation, i.e., a

constant value for K, gives satisfactory results.
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Example (8): Find the transfer function of the following system

F mD y (B1 B2 )Dy (k1  k2)y ;2

F (s) ms   (B1  B2 )s  (k1  k 2 )

Y (s) 1
2


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Example (9): Find the transfer function of the following system

F  k1(y1  y2)

k1(y1  y2)  (k2  k3)y2  (B1 B2)Dy2
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i
Rc dh

 h  Rq
dt

Taking the Laplace transform
(Rcs 1)H(s)  RQ (s)

i

So that the final transfer function will be
H (s)

Q (s) (Rcs 1)
i

0 
R

According to that we can find

Qi (s) (Rcs 1)
1Q (s)

0 
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2

2
2 R

h
q  ; 1

C  1  q q
1 dt

dh
; 2 1 2

C  2  q q
dt

dh

Home work : Find TFs.
Q(s)

Q  
(s)
2

2.14. Thermal Systems:
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Consider that heat input rate changes from H  to H  hi   then heat

outflow will change from H to H  ho also the temperature of the

o    to o  o . Consideringout following liquid will change from 

change only:

Q d

dt
h hi o

  h.R

Or

RQ   Rhi
dt

d

Assist. Prof. Dr. Yousif Al Mashhadany 149 134





Control Theory I Mathematical Representation of Physical Systems

(s)


1

i (s) RQs 1

In case of changes in both i & h

Rc    Rh
dt i i

Where

i then we have :

d

i : Steady state temperature of inflowing liquid, F .o

o : Steady state temperature of outflowing liquid, F .o

G : steady state liquid flow rate lb/sec.

M: mass of liquid in tank,lb.
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c: specific heat of liquid tu/lb.Fo. 

R: thermal resistance, Fo sec/B tu.

Q: thermal capacitance, B tu/Fo.

H : Steady state heat i/p rate ,B tu/sec.
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15. Extra systems

1. ear trains

A gear train is a mechanical device that transmit energy from one

part of a system to another in such a way that force, torque ,speed

and displacement are altered. Two gears are shown coupled

together in following figure. The inertial and friction of the gears

are neglected in the ideal case considered.

The relationships between the torque T1, T2 and angular

displacements ө1, ө2  and the teeth numbers N1, N2  of the gear train 

are derived from the following facts.
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1. The number of teeth on the surface of the gear is proportional 

to the radius r1, r2 of the gears ,that is.

r1N2= r2 N1
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2. The distance traveled along the surface of each gear is same.

Therefore

r1 ө1= r2 ө2

3. The work done by one gear is equal to that of the other since 

there is assume to be no loss, thus

T1 ө1= T2 ө2

If the angular velocities of the two gears are ω1 and ω2

T1  
2  

N1  
2  

r1 T2 1 N 2 1 r2
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because they tend to be bulkier and more expensive. Using ideal

op-amp properties, the input-output relationship, or transfer

function, of the circuit shown in Fig. can be written in a number of

ways, such as

Ei (s) Z1 (s) Z1 (s)Y2 (s) Y2 (s)
G(s)  Eo (s)

 
Z 2 (s)

   Z (s)Y (s)   Y1(s)1
2 1

Where  Y1(s)  =  1/Z1(s)  and  Y2(s)=1/Z(s)  are  the  admittances 

associated with the circuit impedances.
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The output voltage is

Eo (s)  [E p (s) E1(s) ED (s)]

Thus the transfer function of PID operation amplifier is

 R c s
E(s) R R c s

G(s)  E0 (s)


R2   D   
D1 i   i

1

R1Ricis

This is transfer function of ( proportional , integral , derivative

)(PID) controller that will study in details in next time.

G(s)  R1Rici Rd cd s   R1Rici s  R1
2
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One of the methods used to obtain a simulation diagram includes

the following steps:

1)Start with differential equation.

2)On the left side of the equation put the highest-order derivative

of the dependent variable. A first-order or higher-order derivative

of the input may appear in the equation. In this case the highest-

order derivative of the input is also placed on the left side of the

equation. All other terms are put on the right side.

3)Start the diagram by assuming that the signal, represented by the

terms on the left side of the equation, is available. Then integrate it
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as many times as needed to obtain all the lower-order derivatives. It

may be necessary to add a summer in the simulation diagram to

obtain the dependent variable explicitly.

4) Complete the diagram by feeding back the approximate outputs 

of the integrators to a summer to generate the original signal of step

2. Include the input function if it is required.

Example (17): Draw the simulation diagram for the series RLC 

circuit of Fig. below in which the output is the voltage across the 

capacitor.

Solution:
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step3.the signal Y .. is integrated  twice  as  shown  in simulink

implementation (Fig.a)

step4. The complete block diagram can be illustrated as in Fig.b.  

the state variables are often selected as the output of the

integrators in the simulation diagram. 

In this case they are :

y  x1 ,

y  x2  x 1

y   x 2
.. .

. .

The state space representation of the system is
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0]   0u  cX  Du
x2 

x1 
y  [1

   
u  AX  Bu

 LC L  LC 
x2 

x1 
1 R 

x
.
2 

x 1

   1 
0 1 


 


0

 

 .  



Fig.2.19. Simulink implementation
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Fig.2.20. Simulink implementation of system state space

Example (18): Draw the simulation diagram that explain the 

differential equation below: y... 2y.. 5y. 7y 5sin(u)
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input shaft position and the output shaft

r = reference input shaft, radian 

c = output shaft, radian

θ = motor shaft, radian

k1 = gain of potentiometer error detector = 24/π volt/rad 

kp = amplifier gain = 10

kb = back emf const.= 5.5*10-2 volts-sec/rad

K = motor torque constant = 6*10-5 Ib-ft-sec2
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Ra = 0.2 Ω

La = negligible

Jm = 1*10-3 Ib-ft-sec2 

fm = negligble

Jl = 4.4*10-3 Ib-ft-sec2 

fL = 4*10-2 Ib-ft/rad/sec

n = gear ratio N1/N2=1/10

Hint J = Jm+n2Jl , f = fm+n2fL
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