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This Lecture will discuss the following subjects:

1) Thislecturediscussesthefollowing topics:
2) Introduction.

3) Open Loop System

4) CloseLoop System.

5) Definitionsof control system.

6) The engineering control problem.
7) Solved Examples

8) Problems




1.1. Introduction:
The toaster in Fig.1.1 can be set for the desired darkness of the

toasted bread. The setting of the “darkness” knob, or timer,
represents the input quantity, and the degree of darkness and
crispness of the toast produced is the output quantity. If the degree
of darkness is not satisfactory, because of the condition of the bread
or some similar reason, this condition can in no way automatically
ater the length of time that heat is agpplied. Since the output
quantity has no influence on the input quantity, there is no feedback
in this system. The heater portion of the toaster represents the
dynamic part of the overall system, and the timer unit is the

reference selector.




Desired toast
"Darkness setting"

Fig. 1.1 Open-loop control system automatic toaster

The dc shunt motor of Fig. 1.2 is another example. For a given
value of field current, a required value of voltage is applied to the

armature to produce the desired value of motor speed. In this case

the motor is the dynamic part of the system, the applied armature




voltage is the input quantity, and the speed of the shaft is the output
guantity. A variation of the speed from the desired value, due to a
change of mechanical load on the shaft, can in no way cause a
change in the value of the applied armature voltage to maintain the
desired speed. Therefore, the output quantity has no influence on
the input quantity.

1.2. Open L oop System:

Systems in which the output quantity has no effect upon the input
quantity are called open-loop control systems. The examples just
cited are represented symbolically by a functional block diagram,
assnownin Fig. 1.2.C. In thisfigure, (1) the desired darkness of the
toast or the desired speed of the motor is the command input, (2)




the selection of the value of time on the toaster timer or the value of’
volrage applied to the motor armamre 18 represented by the
reference-selector block, and (3) the output of this block is
identified as the reference mput. The reference inpur is applied to
the dynamic unit thar performs the desired control fimerion, and the

output of this block is the desired ourput.

Voltage selector Voltage source for the field

Motor \p(-tdA =

(al DC motor




Command

input

Reference
selector

Reference

input

(b)

Dynamic
unit

Output

Fig. 1.2. Open-loop control system (a) electric motor; (b)

functional block diagram.

A person could be assigned the task of sensing the actual value of

the output and comparing it with the command input. If the output

does not have the desired value, the person can alter the reference-

selector position to achieve this value. Introducing the person

provides a means through which the output is feedback and is

v




compared with the input. Any necessary change is then made in

order to cause the output to equal the desired value.

1.3. Close L oop System:

The feedback action therefore controls the input to the dynamic
unit. Systems in which the output has a direct effect upon the input
quantity are called closed loop control systems. To improve the

performance of the closed-loop system so that the output quantity is
as close as possible to the desired quantity, the person can be

replaced by a mechanical, electrical, or other form of a comparison
unit. The functional block diagram of a single-input single-output
(SISO) closed-loop control system is illustrated in Fig. 1.3.

Comparison between the reference input and the feedback signals




results in an actuating signa that is the difference between these
two quantities. The actuating signal acts to maintain the output at
the desired value. This system is called a closed-loop control

system..

Reference Actuating ; System
input signal L/ dynamics

Command | Reference K Forward Output

input selector Elements >
Feedback ........ >
signal
Feedback
element

Fig. 1.3. Functional block diagram of a closed-loop system




The designation closed-loop implies the action resulting from the
comparison between the output and input quantities in order to
maintain the output a the desired vaue. Thus, the output is

controlled in order to achieve the desired value.

Examples of closed-loop control systems are illustrated in Figs.
1.4&1.5 . In a home heating system the desired room temperature
(command input) is set on the thermostat in Fig.1.4. (reference
selector).A bimetallic cail in the thermostat is affected by both the
actual room temperature (output) and the reference-selector setting.
If the room temperature is lower than the desired temperature, the
coil strip aters its shape and causes a mercury switch to operate a

relay, which turns on the furnace to produce heat in the room.




When the room temperature reaches the desired temperature, the
shape of the coil strip is again atered so that the mercury switch
opens. This deactivates the relay and in turn shuts off the furnace.
In this example, the bimetallic coil performs the function of a
comparator since the output (room temperature) is fed back directly
to the comparator. The switch, relay, and furnace are the dynamic
elements of this closed-loop control system.

A closed-loop control system of great importance to all multistory
buildings is the automatic elevator of Fig.1.5. A person in the
elevator presses the button corresponding to the desired floor. This
produces an actuating signa that indicates the desired floor and

turns on the motor that raises or lowers the elevator. As the el evator




approaches the desired floor, the actuating signal decreases in value
and, with the proper switching sequences, the elevator stops at the
desired floor and the actuating signa is reset to zero. The closed
loop control system for the express elevator in the Sears Tower
building in Chicago is designed so that it ascends or descends the
103 floorsin just underdmin with maximum passenger comfort.
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1.4. Definitions of control system.

From the above description there are many terms can be defined as:
Control Theory: It is that part of science which concern control
problems.

Control Problem: If we want something to act or vary according to
a certain performance specification, then we say that we have a
control problem. Ex. We want to keep the temperature in a room at
certain level and as we order, then we say that we have temperature
control problem.

Plant: A piece of equipment’s the purpose of which isto perform a
particular operation (we will call any object to be controlled a

plant). Ex. Heating furnace, chemical reactor or space craft.




The system: A combination of components that act together to
perform a function not possible with any of the individual parts.
The word system as used herein is interpreted to include physical,
biological, organizational, and other entities, and combinations
thereof, which can be represented through a common mathematical
symbolism. The formal name systems engineering can also be
assigned to this definition of the word system. Thus, the study of
feedback control systems is essentidly a study of an important
aspect of systems engineering and its application.

Process. Progressively continuing operation or development
marked by a series of




gradual changes that succeed one another in a relatively fixed way
and lead towered a particular results or end. In this lectures we call
any operation to be controlled a process.

Reference selector (reference input element): The unit that
establishes the value of the reference input. The reference selector
is calibrated in terms of the desired value of the system output.
Reference input: The reference signal produced by the reference
selector, i.e., the command expressed in a form directly usable by
the system. It is the actual signal input to the control system.
Disturbance input: An external disturbance input signal to the

system that has an unwanted effect on the system output.




Forward element (system dynamics): The unit that reacts to an
actuating signal to produce a desired output. This unit does the
work of controlling the output and thus may be a power amplifier.
Output (controlled variable): The quantity that must be maintained
at a prescribed value, i.e., following the command input without
responding the disturbance inputs.

Open-loop control system: A system in which the output has no
effect upon the input signal. Ex. heater, light, washing machine.
Feedback element: The unit that provides the means for feeding
back the output quantity, or a function of the output, in order to
compare it with the reference input.




Actuating signal: The signd that is the difference between the
reference input and the feedback signal. It is the input to the control
unit that causes the output to have the desired value.

Closed-loop control system: A system in which the output has an
effect upon the input quantity in such a manner as to maintain the
desired output value.

The fundamental difference between the open- and closed-loop
systems is the feedback action, which may be continuous or
discontinuous. In one form of discontinuous control the input and
output quantities are periodically sampled and discontinuous.
Continuous control implies that the output is continuously feedback

and compared with the reference input compared; i.e., the control




action is discontinuous in time. This is commonly called a digitdl,
discrete-data or sampled-data feedback control system. A discrete
data control system may incorporate a digital computer that
improves the performance achievable by the system. In another
form of discontinuous control system the actuating signal must
reach a prescribed value before the system dynamics reacts to it;
I.e., the control action is discontinuous in amplitude rather than in
time. This type of discontinuous control system is commonly called
an on-off or relay feedback control system. Both forms

may be present in a system. In this text continuous control systems
are considered in detail since they lend themselves readily to a
basic understanding of feedback control systems. With the above




introductory material, it is proper to state a definition of a feedback
control system: ““A control system that operates to achieve
prescribed relationships between selected system variables by
comparing functions of these variables and using the comparison to
effect control.” The following definitions are also used.
Servomechanism (often abbreviated as servo): The term is often
used to refer to a mechanical system in which the steady-state error
Is zero for a constant input signal. Sometimes, by generalization, it
Isused to refer to any feedback control system.

Regulator: Thisterm is used to refer to systems in which thereis a
constant steady-state output for a constant signal. The name is




derived from the early speed and voltage controls, called speed and
voltage regulators.

Major advantages of open loop control system:
1. Simple construction and ease of maintenance.

2. Less expensive than the corresponding closed loop system.
3. Thereisno stability problem.
4. Convenient when output is hard to measure or economically

not feasible.




The disadvantages of open loop control systems are as follows:
1. Disturbances and changes in calibration cause errors and the
output may be different from what is desired.
2. To maintain the required quality in the output, recalibration
IS necessary from time to time.
5. Theengineering control problem:
In general, a control problem can be divided into the following

steps:
1. A set of performance specificationsis established.
2. The performance specifications establish the control

problem.




3. A set of linear differentia equations that describe the
physical system is formulated or a system identification
technique is applied in order to obtain the plant model

transfer functions.

4. A control-theory design approach, aided by available
computer aided-design (CAD) packages or specidly written
computer programs, involves the following:

a The peformance of the basc (origind or
uncompensated) system is determined by application of
one of the avalable methods of analysis (or a

combination of them).




b. If the performance of the original system does not meet
the required specifications, a control design method is
selected that will improve the system’s response.

c. For plants having structured parameter uncertainty, the
guantitative feedback theory (QFT) design technique
may be used. Parametric uncertainty is present when
parameters of the plant to be controlled vary during its
operation.

5. A simulation of the designed nonlinear system is performed.

6. The actual system isimplemented and tested.




Design of the system to obtain the desired performance is the
control problem. The necessary basic equipment is then assembled
into a system to perform the desired control function. Although
most systems are nonlinear, in many cases the nonlinearity is small
enough to be neglected, or the limits of operation are small enough
to dlow a linear analysis to be used. This textbook considers only
linear systems. A basic system has the minimum amount of
equipment necessary to accomplish the control function. After a
control system is synthesized to achieve the desired performance,
final adjustments can be made in a simulation, or on the actual
system, to take into account the nonlinearities that were neglected.
A computer is generally used in the design, depending upon the




complexity of the system. The essentia aspects of the control
system design process are illustrated in Fig.1.6. Note: The
development of this figure is based upon the application of the QFT
design technique. A similar figure may be developed for other
design techniques. The intent of (Fig.1.6) is to give the reader an
overview of what is involved in achieving a successful and

practical control system design.

Finally the following design policy includes factors that are worthy

of consideration in the control system design problem:

1. Use proven design methods.
2. Select the system design that has the minimum complexity.




3. Use minimum specifications or requirements that yield a
satisfactory system response. Compare the cost with the
performance and select the fully justified system
implementation.

4. Perform a complete and adequate simulation and testing of
the system.




Intreduction 1o Conlral System

.
3
=
o
—
-
-
-
-
=
z
=2
-~

Cantrol Theory 1

Assive. Prof. Dr.




1.6. Solved Examples

Example 1: Fig.l.7.a. is a schematic diagram of a liquid level
control system. Here the automatic controller maintains the liquid
level by comparing the actual level with the desired level and
correcting any error by adjusting the opening of pneumatic valve.

Fig.1.7.b. is the corresponding block diagram of the control system.
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Fig.1.7. (a) Liquid level control s&tl)étem. (b) corresponding B.D.
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To draw the block diagram for a human operated liquid level as an
example of closed loop control system we will need the following
parts (see Fig. 1.8):

1. Eyesasasensor . 2. Brain asacontroller

3. Muscles as a pneumatic valve as in the following block

diagram

Desired Brain | Muscles Water Actual ~

level | Andvalve tank level

A

A 4

Eyes <

Fig.1.8. Block diagram of human operated liquid level control

system




Example 2. An engineering organization system is composed of
major groups such as management, research and development,
prdiminary design, experiment, product design and drafting,
fabrication and assembling and testing. These groups are
Interconnected to make up the whole operation. The system may be
organized by reducing it to the most elementary set of components
necessary that can provide the analytica detail required and by
representing the dynamic characteristics of each component by a set
of simple equations. The functional block diagram of the
engineering organization can be illustrated as in the block diagram

iIsshownin Fig. 1.9.
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Problems
Give two examples of feedback control systems in which a

human acts as a controller?

Explain the open-loop control system by functiona diagram
and describe the blocks by practical example?

Explain the closed-loop system by functional block diagram
and compared it with open-loop control system?

Many closed-loop and open-loop control systems may be
found in homes. List several examples and describe them?
Draw the genera block diagram of control system and

explain each block in the sketch?
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Thislecturediscussesthefollowing topics:

1.Introduction:

2.

3.

4,

S.

Electrical system.
Multiloop Electric Circuits.
State Space Concepts (S.5)

Transfer Function (T.F):

6.Correlation between transfer functions

and state-space equations.




10.

11.

12.

Transfer Function From State-Variable Representation.
State Variable Representation From Transfer Function.
Propertiesof the State Transition Matrix:

Complex impedances.

Transfer function of nonloading cascaded system.

Mecanical Systems.

2.12.1. Trandlational mechanical systems

2.12.2. Rotational mechanical systems




13. Liquid systems.
14. Thermal systems.
15. Extrasystems

215.1. Gear trains
2 15.2. Potentiometer
2.15.3. Error Detector

2.15.4. First-Order Op-Amp

2.16. Simulation diagram




2.1. Introduction:

eMechanical, electrical, thermal, hydraulic, economic, biological,
etc, systems, may be characterized by differential equations.

e The response of dynamic system to an input may be obtained if
these differential equations are solved.

e The differential equations can be obtained by utilizing physical
laws governing a particular system, for example, Newton's laws for
mechanical systems, Kirchhoff's laws for electrical systems, etc.
Mathematical models. The mathematical description of the
dynamic characteristic of a system. The first step in the analysis of

dynamic system is to derive its model. Models may assume




different forms, depending on the particular system and the
circumstances. In obtaining a model, we must make a compromise
between the simplicity of the model and the accuracy of results of

the anaysis.

Transfer functions. The transfer function of a linear time-invariant
system is define to be the ratio of the Laplace transform ( z-
transform for sampled data systems) of the output to the Laplace
transform of the input (driving function), under the assumption that

al initia conditions are zero.

Example: Consider the linear time-invariant system




agy™ +a1y(n_D ot A qY T ENY —box(M +blx(”H) +eeeet By g X +bmX ,N=m

Taking the Laplace transform of y(t)

1(agyM) =agt(y™M) =ag[STY(s) - SN~ 1y(0) - SN~ 2y(0) -.....- y(" =D ()

U(any) =ani(y)=anY(s)




same thing is applied to obtain the L.T. of x(t).by substitute al
initial condition to zero. The transfer function of the system

become.

Transfer function =G(s) =

eTransfer function is not provide any information concerning the
physical structure of the system (the T.F. of many physicaly
different system can be identical).




e The highest power of sin the denominator of T. F. is equal to the
order of the highest derivative term of the output. If the highest
power of sisequal to nthe system is called an nth order system.

How you can obtain thetransfer function (T. F.)?

1- Write the differential equation of the system

2TakethelL. T. of the differential equation, assuming all initial

condition to be zero.

3 Taketheratio of the output to theinput. Thisratioisthe T. F.




In generd, variables that are functions of time are represented by
lowercase |etters. These are sometimes indicated by the form x(t ),
but more often this is written just as x. There are some exceptions,
because of established convention, in the use of certain symbols. To
simplify the writing of differential equations. The symbols D
and1/D are defined by:

2
DyEgM(D : DZyE d_M(D
at dt2

D—lys%ysj;y(r)dr +[°yl)de =] y()dt +Y,




where Yo represents the value of the integral at time t = 0. that 1s.

the initial value of the integral.

2.2. Electrical system:

For the series RLC circuit shown in Fig.2.1,

P.

(t) )
e t) )
t(t)

¢
N i
— — }[ +

Fig.2.1. Series Resistor—Inductor—Capacitor Circuit




the applied voltage is equal to the sum of the voltage drops when
the switch isclosed:

V +Vi+V =€
(2.4)

LD +Ri +ii =e
CD
(2.5)

The circuit equation can be written in terms of the voltage drop
across any circuit element. For example, in terms of the voltage

acrosstheresistor, VR = Ri, the equation become:




L D 1
E VR+VR +ﬁVR:e
(2.6)

For LRC circuitin Fig.2.2.

+ l + R ~ D

' L1 AN——p——e

| i

€ itt)) e ‘o
»

e —— A_.l,, —

Fig.2.2. Series Resistor—Inductor—Capacitor Circuit




Applying Kirchhoff’s voltage law to the system shown. We obtain
the following equation;
di

1¢.
L—+R+=—|idt=e
at +cI .

(2.7)

éﬁm=%
(2.8)

Above two equations give a mathematical model of the circuit.
Taking the L.T. of equations, assuming zero initial conditions, we

obtain:




1
LS(9)+RI(S)+ g1 (9)=E(S)

1
UGG

The final transfer function of the series RLC circuit will be asin the

following equation :

E,(S) _ 1
E(S LCS?+RCS+1




2.3. Multi loop Electric Circuits

Multi loop electric circuits (see Fig.2.3) can be solved by either

loop or nodal equations.

Fig.2.3. Multi loop network

The following example illustrates both methods. The problem is to

solve for the output voltage Vo.




Loop Method: A loop current is drawn in each closed loop
(usualy in a clockwise direction); then Kirchhoff °’s voltage

equation is written for each loop:

1. : 1
(R1+6)|1_ R, _C_D|3 =€

—Ri; +(R+R, +LD)i, —Ri; =0

—C—Dl1 R, +(R2+R3+—)| =0




The output voltage is Vo=R3 i3 These four equations must be
solved simultaneously to obtain Vo(t) in terms of the input voltage

g(t) and the circuit parameters.

Node Method: The junctions, or nodes, are labeled by letters in
Fig.2.4. Kirchhoff’s current equations are written for each node in
terms of the node voltages, where node d is taken as reference. The
voltage Vyq IS the voltage of node b with reference to node d. For
simplicity, the voltage Vq IS Written just as V.
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Since there is one known node voltage Va=e two unknown voltages

Vb and Vo, only two equations are required:
For node b and node c:
In terms of the node voltages, these equations are:

Vp Vo_

a+CDV + 0
2
Vo =W +£V +i(\/0 -e)=0
R, R, LD

Rearranging the terms in order to systematize the form of the

equations gives:




gi+CD S VA
R R,

R, R

1 1 1 1
—V, +(—+—+—)NN, —
& b (LD R2 R3)0 I_D

For this example, only two nodal equations are needed to solve for
the potential at node c. An additional equation must be used if the
current in R3 is required. With the loop method, three equations
must be solved simultaneously to obtain the current in any branch;
an additional equation must be used if the voltage across R3 is
required. The method that requires the solution of the fewest
eguations should be used. This varies with the circuit.




The rules for writing the node equations are summarized as

follows:

1.The number of equations required is equa to the number of

unknown node voltages.

2. An equation is written for each node.

3. Each equation includes the following:

(@) The node voltage multiplied by the sum of all the admittances

that are connected to thisnode. Thisterm is positive.




(b) The node voltage at the other end of each branch multiplied by
the admittance connected between the two nodes. This term is

negative.

2.4. State Space Concepts:

Basic matrix properties are used to introduce the concept of state
and the method of writing and solving the state equations.

Sate: The state of a system is a mathematical structure containing a
set of n variables x1(t ), x2(t ), . .., xi(t), ..., xn(t ), caled the
state variables, such that the initial values xi(to) of this set and the

system inputs uj(t ) are sufficient to describe uniquely the system’s




future response of t > to. A minimum set of state variables is
required to represent the system accurately. The m inputs, ul(t ),
u2(t ), . .. ,ut), ... ,umt ), are deterministic; i.e., they have

specific valuesfor all values of timet > to.

Generadly the initial starting time to is taken to be zero. The state
variables need not be physically observable and measurable
guantities; they may be puredy mathematica quantities. The
following additional definitions apply:




Sate \ector: The set of state variables xi(t) represents the elements
or components of the n-dimensional state vector x(t); that is,
x®] [%

X (t) X5
X)) =] %) {=]| X%

1l
X

_Xn (t)_ _X .
The order of the system characteristic equation is n, and the state
eqguation representation of the system consists of n first-order
differentia equations. When al the inputs uj (t) to a given system
are specified for t> to, the resulting state vector uniquely

determines the system behavior for any t > to.




State Space: State space is defined as the n-dimensional space in
which the components of the state vector represent its coordinate

aXes.

State Trajectory: State trgjectory is defined as the path produced
in the state space by the state vector x(t) as it changes with the
passage of time. State space and state trgectory in the two-
dimensional case are referred to as the phase plane and phase
trajectory, respectively.

The first step in applying these definitions to a physical system is
the selection of the system variables that are to represent the state
of the system.




Note that there is no unique way of making this selection. The three
common representations for expressing the system state are the

physical, phase, and canonical state variables.

The selection of the state variables for the physical-variable method
is based upon the energy-storage elements of the system. Table 1
lists some common energy-storage elements that exist in physica
systems and the corresponding energy equations. The physical
variable in the energy equation for each energy-storage element can
be selected as a state variable of the system. Only independent
physical variables are chosen to be state variables.




Independent state variables are those state variables that cannot be
expressed in terms of the remaining assgned state variables. In
some systems it may be necessary to identify more state variables
than just the energy-storage variables. This situation is illustrated in
some of the following examples, where velocity is a state variable.
When position, the integra of this state variable, is of interest, it
must also be assigned as a state variable.

For the circuit of Series RLC Circuit (Fig.2.2). This circuit contains
two energy-storage elements, the inductor and capacitor. From
Table 1, the two assigned state variables are identified as x1=Vc




(the voltage across the capacitor) and x2=i (the current in the

inductor). Thus two state equations are required.

Fig 2.3 is redrawn in Fig. 2.4 with node b as the reference node.
The node equations for node a and the loop equations are,

respectively,
Cx=x ; Lx +Rx +x =u
2 2 2 1
Rearranging terms to the standard state equation format yields:

X = iXz
C

1 R 1
X, =—=X, ——X, +—U
2 LT e




Table 2.1.Energy storage elements

System Elemnet Energy Physical variable
Electrica Capacitor (C) Voltage (v)
Inductor (L) Current (i)
Mechanical Mass (M) Trandational velocity

(V)

Moment of inertia (J)

Rotationa velocity
(w)




Spring (K)

Displacement (x)

Fulld | 51id compressibility Fizsslie (R
(
Fluid capacitor C=pA Height (h)
Thermal | Thermal capacitor C Temperature (©)

Equation (2.13) represents the state equations of the system

containing two independent state variables. Note that they are first-

order linear differential equations and are n=2 in number. They are




the minimum number of state equations required to represent the

system’s future performance.

State equation. The state equations of a system are a set of n first-
order differential equations, where n is the number of independent
states.

The state equation represented by Eq(2.12)is expressed in matrix
notation as:

[xl}' {o 1/C WrxJJ(ﬂu (2.14)

X, | [~1L —RIL| %, LJ




The standard form of the state space equationis:

X = Ax+Bu

In this case ,the matrix A which is the system matrix will be:

0 1/C . .
A= 1 nxn plant coefficient matrix
~1/L —R/L]

Matrix B ,which isinput matrix will be:

0
1|1, nx1 control matrix
L]

B=

and, in this case, u=[u] is a one-dimensional control vector.




In (X =Ax+Bu), matrix A and x are conformable. If the output
guantity y(t) for the circuit of Fig.8 is the voltage across the

capacitor vc, then

yO) =V =%

Thus the matrix system output equation for this exampleis:
[xt
y(t)=Cx +Du=[1 O]|LX2 +[QJu (2.15)

Where




C is the output matrix with 1xn dimension for single input single
output system (SISO),
D isthe forward matrix =0.

For a multiple-input multiple-output (MIMO) system, with m

inputs and | outputs, these equations become:
X = Ax+ Bu ; y=Cx+Du ;
Where: A=nxn plant or system matrix

B=nxm control orinput matrix ; C=I|xn output matrix

D=1xm feedforward matrix
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2.5. Transfer Function (T.F):

If the system differential equation islinear, the ratio of the output
variableto the input variable, where the variables are expressed as

functions of the D operator, is called the transfer function.

Consider the system output vC=y in the RLC circuit of Fig.2.1
substituting i=CDv¢ into Eq( LDi+Ri+1/CD i=€), yields:
(LCD?*+RCD+1)v;(t)

The system transfer function is:

G(D):AL(D:Vc(t) _ 1
ut) et) LCD?*+RCD+1




The notation G(D) is used to denote a transfer function when it is
expressed in terms of the D operator. It may also be written smply

asG.

The block diagram representation of this system (Fig.2.6)
represents the mathematical operation G(D)u(t)=y(t); that is, the
transfer function times the input is equal to the output of the block.
The resulting equation is the differentia equation of the system.

u(t) »[ GD) yt)

Fig.2.6. Block diagram representation.




Note: sometime used the symbol (s) instead of (D) and transfer
function becomes writing as (G(s)) and D=s and D2=52 ...... , and

the equation (2.16) will write as:

1

G= 2.17
LCS* + RCS+1 ( )

The program by using Matlab to change between the two forms for
representation of control system ( State Space and Transfer

Function ) can be shown below;

Cy=1;Ly=10;Ry=100;

A=[ 0 /Cy -1Ly -Ry/Ly]:




B=[0 1/Ly];
C=[10];
D=[0];

[num,den]=ss2tf(A,B,C,D)

numc=[0 0 1];
denc=[Ly*Cy Ry*Cy 1J;
[AA,BB,CC,DD]=tf2ss(numc,denc)

In the Matlab/Simulink can be done asin the Fig. 2.7.
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2.6. Correlation between transfer functions and state-space

eguations

The following full derivation of transfer function of SISO system
from the state-space equations. Let us consider the system whose
transfer function is given by:

Y(s)

REVIE]

This system may be represented in state space by the following
eguations:

X = Ax+Bu ; y=Cx+Du




Where : x is the state vector ,u is the input and y is the output. The

L aplace transform of the equation 2 is given by:

sX(s) — x(0) = Ax(s) + Bu(s)
Y(s) = Cx(s) + Du(s)

(2.20) Since the transfer function is previoudy defined as Laplace
transformation of the output to the input with zero initial

conditions, we assume that x(0)=0,then we have
sx(s)— Ax(s) =Bu(s) or (9 — A)X(s)=BU(s)

Multiplying (3 —A)* to both sides of the last equation we will

obtain




X(5)=(3 -A'BU(S
Substitute (2.21) in (2.20) we get

Y(s)=[C(9 - A)*B+DJU(s)
So that the transfer function of the system represented by state
space will be:

G(9) =Y(9)/U () =[C(S — A B+ D]

The right hand side of equation (2.23) involves (S — A)*.Hence

G(s) can be written as

G(9)=Q()/1(S - A




Where Q(s) isapolynomial in s .Therefore, |(S - A)|isequal to the
characteristic polynomial of G(s).in other words ,the Eigen values

of A areidentica to the poles of G(s).

oD
. . A
2] —rf:"}—--- - e
- [

Fig.2.8. Block diagram of state equation and output equation




From Fig.2.8. can be written the following states equations:
% =Y—Pou

X =y~ Bou- - Blu =X - Blu

X, =y - Bou-- —Bu =x2-PB,u

X = y™t —Bou"*l - BIU“*2 s B U-B U =x,—B,,u
Wheref,, B;, B2, B, are determined from

Bozbo




Blzbl_alBO
Bz :bz_alﬁl_aZBO

Bs=b;—af, —ap, —aP,

Bn = hw _ail?)n—l_an—ZBn—Z — coonc _anBO

With this choice of state variables, the existence and uniqueness of

the solution of the state equation is guaranteed. (Note that thisis not




the only choice of a set of state variables). With the present choice
of state variable, we obtain

X1=% + U
X2 = X3+ B,U
Xn1=X, +B,U

Xn=—a,X —8, 1% — e — X, + BrU

In term of vector matrix equations, the output equation can be
written as




X1 o 1 0 0 0] % B |
X2 0 0 1 0 0 | x, Bz
X3 |=|0 0 0 1 0 [x [+|B;
X'n-1 0 0 0 0 1 | xns B n-1
X'n |8, ~8n &2 —&h3 —alj Xn B
s
X
yFB o o o 0] % |+Bou
X'n-1|
_X'n
Or X =AX +
BUY =CX +

DU




X, o 1 0 0 o] B,
X, o 0 1 o 0 B,

X={x, |[A=l0 0 0 1 0 |,B=|p,
X n-1 0 O O 1 Bn—l
Xn i __an —Q,; —d,, —Q3 _alj _Bn J

cC=<p o0 0 0 0]

D= Bo = bo

Note that the state space representation for the transfer functionis




Y(s) _bys" +Bs™ +b,s™? +b,
U(s) s"+as"'+as"*+a,

Example (1): Obtain the state equations for the circuit of Fig.2.9.
The output is the voltage vi.The input or control variable is a

current sourcei(t). The assigned state variables

areil,iz,ig,vl,andvz,?
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v, =LL,Di, +V,

v, =LsDi; . i, =CDv +i

I =i3+C,Dv, +i, . Ly =L, +Lji,+K

0 0 -1/C, -1/C, [0
" - 0 0 —L,/C,L, —(L,+L,)/C,L, o 1/C,
L, 0 0 0
~1/L, 1L, 0 0 0

bR o 0o 0 K

—




2.7. Transfer Function from State-Variable Representation:

Having established the conditions for the equivalence of the state-
variable representation with that of the transfer-function, we are
interested to find one representation from the other by finding their
relationship. Let us consider first the problem of determining the
transfer function of a system given the state variabl e representation

X-(t) = AX(t) + Bu(t)

y(t) = Cx(t)

since the transfer-function representation is expressed in the

frequency domain, we begin by taking the Laplace transform of




both equations, assuming as wusua in transfer-function

determination that theinitial conditionson x are all zero.
SX = AX(s)+BU (s) : Y(s)=CX(9)
Grouping the two X(s) terms in Equation (2.24) we have
(sl —A)X(s) =BU(s)

where the identity matrix has been introduced to allow the indicated
multiplication compatible. Now, pre-multiplying both sides of the
above equation by (sl —A)*, we get

X(s) = (sl —A)1BU(s)




We substitute this result in Equation (2.25) to obtain

Y(s) = C(sl —A)* BU(s)

Comparing this relation between Y (s) and U(s) with the Equation
(Y(s) = G()U(s))

we find that the transfer function matrix G(s) as:

G(s) =C(sl ~A)'B

For the single input-single output case, this result reducesto

G(s) =c(sl —A)*b




The matrix (sl — A)? is commonly referred to as the resolving
matrix and is designated by ¢(s),

o(s) = (sl —A)*
In terms of this notation the Equations become

G(s) =C o(s) Band G(s) =c' p(9) b (2.26)

Example (2): Consider the system represented by the equations




0 1 0
x ()= [_10 - Jx(t) + [Ju(t)

yt)=fL Ok

The matrix (sl —A) in this example becomes
100 11_ s -1
01 _|L—1o ~7]" |10 s+7

Itsinverseisfound as

S+7 1]

adj(sl - A) _ {—10 S
det(sl —A) s?2+7s+10

() = (sl —A) =




Hence, transfer function will be as

G(s)=c'o(s)b=(sl —A)* =

2 +7s+10  s2+7s+10

In the above example, we observe that the determinant of the
matrix (sl — A) is equa to the denominator polynomial of G(s).
This is aways true for single input - single output systems.
Although Equation (2.26) provide a direct method for determining
the transfer function of a system from a state-variable
representation of the system, it is generadly not the most efficient
method.




2.8. State Variable Representation from Transfer Function:

In Section 2.6 we have shown how to get the transfer function
model of alinear continuous system when its state-variable form is
available. We shall now take up the issue of getting the state-
variable model when the transfer function model is available. Since
the sate-variable representation is not unique, there are,
theoreticaly, an infinite number of ways of writing the state
eguations. We shall present here one method for deriving a set of
continuous state variable representation from the transfer function.

Analogous procedure may be followed for writing the continuous




state equation from pulse transfer function in S domain. The

transfer function of single-input-single-output system of the form:

G(s) = a ,s""+a ,s"?+..+as+a,
n-1 _2
s"+b S +b s"?+...+bs+b,

Can be written ,after introducing an auxiliary variable E(s) as

G(s) = Y(s) _ a,,S" +a,,8" +....tas+a, 4 E(9
U(s) s"+b,,s"" +b, ,S"*+...+bs+b, E(9)

We let now

Y(g)=(a s"+a s"’+...+as+a)E(s)




— n n-1 n-2
U(s)=(s"+ bnils + bnizs + e + bls+ bo) E(s)

From Theorem of Laplace transform, we note the following
relations between the variables in the s domain and time domain

with zero initial conditions
E(s) - e(t)

E(9 —>e(t)

S’E(s) > e (t)

Under this correspondence we define the state variables

% (O) =€)




X )= X ) =e(t)

X =% O)=e()

X (t)= X (t) =e™(t)

From above two Equations group we obtain the state equations
X1(t) =% (t)

X2(t) = X, (t)

X3(t) =X (t)




Xn (£) = X, (t) = 0o, (£) =B, () — B, %5 (1) — b, %, () +u

In matrix notation this becomes

x1 | To 1 0 0 olx | [0]
x2 | lo 0o 1 o0 OWLZ 0
X3 [=]0 0 0 1 0% [+{Of
Xnal |0 0 0 0 1| xnal |O
Xn by Dy -b,  -b by, 1]

In compact form, it iswritten as :
X’(t) = A x(t) + Bu(t) ; The output equation is obtained from as

which may be written compactly asy(t) = Cx(t)




Hence the last two Equations are a set of state equations for the
continuous system described by transfer function. Another
convenient and useful representation of the continuous system is
the signal flow graph or the equivalent ssmulation diagram. These
two forms can be derived, after dividing both the numerator and

denominator of first Equation by sn :

Y(s) _ a, 8" +a,,S" +...tasS+a, , E(9)
U(s) s"+b,,8" +b,,8"? +....+bs+h, E(9)

G(s) =

From this expression we can get two equations

Y(g)=(a s""+a s +...+as+a)E()




U@®=(s"+b s +b s +...+bs+b )E(S)
The above equation can be rewritten as follows
E(s)=U(s) —bnils*lE(s) -b SPE(S) +.enene —blsl*n E(s)-b s"E(s)

Example (3): Let us consider a single input single output system of
the last Example which is reproduced below for quick reference:

A=[ 0 1J,b=m,c:ﬂ 0ld=p 0]

-10 -7




We are interested to find its solution with initial condition X/(tp) =
X'(0) =[0 0] and unity step input u(t) = us(t). The resolving matrix
¢(S) given by relation (¢(s) = (sl —A)™) iswritten as::

{s+7 1J
adj(sl-A) _ 10 s

0(s) = (sl ~A)" = det(sl —A)  s%+75+10
[ s+7 1 }
| $*+7s+10 s*+7s+10
o (s) —‘ i . i

| s2 475410 s2+7s+10]




1,5 2 l(L_L) |
b(s) = fos+12 s+15 fsgz s+25 \
(- =(——-——=)
| 3 's+2 s+5 3 s+5 $+25 |
% (5e% —2e7°) E(le*2 ~le® )_’
3
¢(t)={10 1 ||
3(1e -1le™) §(5e —-2e )J

Substituting the value of x'(0)=[0 O] and unit step input in the
eguation we get




X(t) = [$(t —t)bu(c)dr =

%j‘ (]_efZ(tft) _]_efS(tft) )d'C
0

X(t) = 5 .

Therefore y(t) is computed as y(t)=cx(t)+du(t)

y(t) = 1 len  Les >0
15

10 6

EJ‘ zj' (5e—5(t—1:) _ 2e—2(t—1:) )dT
L 0 0

1— j‘ (5e-2(t-r) _2g5(t=) )ot
3%

t
]E J' (1672 —1e75¢9) ) gt
3 0

}j’ (1e—2(t—‘|:) _:le—S(t—r))dt |—|
3%

1t 1
2 I (5e—5(t—1) _Ze—z(t—r))drh
0

1 1,1 =]
10 6 15
loa lgs

3 3




9. Propertiesof the State Transition Matrix:

Some useful properties of the state transition matrix o(t) are
recorded below :

1. ¢0) =& =1 (identity matrix)

2. pt) =€ =" =¢(-1)* or o(-1) =0 (t) =4(-1)
3. d)(tl+t2) =eMNttd) = g M2 = ((t 2"’“ 2 =¢(t 2(])(t 2

4. (@®)" =¢(nt)

5. ot —t,)o(t, —t;) =d(t, —t;) for any ty, to, t3




¢(r)
6. —~=4
- (1)

2.10. Complex impedances.

Consider the circuit shown in Fig.2.10. then the T.F of this circuit is

— T fel— a7 AAA,

|
it e 1 |+
HH# L . 4‘—::. € ,“u Vi) e {.:fn
r I

| [k e

Fig.2.10. circuit diagram of complex impedance

a

=




Eo(s) . Z,(9)
E(s) Zi(s)+Z,(9)

Where
Z(9=Ls+R . Z,(9=1
J Cs

Z(s)=E(9)/I

Hence the T.F. Eo(s)/Ei(s) can be found as follows;

S
Eo(s) _ Cs _ 1
2
E (s) LS+R+El LCs? + RCs+1
S




Example (4): Consider the electrical cct shown in Fig.2.11. Obtain

the T.F Eo(s)/Ei(s) by use of the block diagram approach?

R, Rs
O———WWW——— MW, l O
\: \CZ f_-1
/
/

\
" ‘J’
i * iy *
o - O

Fig. 2.11. Circuit diagram of Example 5.

Solution:

Equations of the circuit in Fig.2.11 are:




¢, . ,
€ :_J.(ll_lz)dt+|1R1

C
_ 1, 1 .. :
O—af(lz_ll)dt+c_zjlzdt+|2%

1
= |i,dt
&= |
By taking the L.T. for the above equation:

E(S), =——(1,(9 = 1,(9) + 1, (IR,
Cs

(2.27)




0= (1,(9-1,(9+ - 1,(3 (IR, (2.28)
Cs

1 ZS

1
2S

Eo (S) =

1,(8)

By using Eq(2.27), we get:
CHE(S); —1.(9R]=11(9)-12(9) (2.29)

From EQ’s(2.28)&(2.29) we get:

C,s

_ « 1 _
IZ(S)_R2C25+1 Clslll(s) 12(9)]




The transfer function of Eo(s)/Ei(s) can written in term of 12(s) as

follow:

Bo(9) _ ! (2.30)
E(s) (RC,s+1)(RC,s+1)+RC,s '

The teem R ;C,s in the denominator of the transfer function
represents the interaction of two ssmple RC circuits .since (R, C,
+R,C,+R;C)2? > (4R ,C;R,C,) the two roots of the denominator of
equation (2.30) are real. The present analysis show that if two RC

circuits are connected cascade so that the output from the first




circuit is the input to the second, the overal transfer function is not
the product of 1/(R, C;s+1) and 1/(R,C,st1).

The reason for this is that when we derive the transfer function for
an isolated circuit, we implicitly assume to be infinite which means
that no power is being withdrawn at the output. when the second
circuit is connected to the output of the first , however, a certain
amount of power is with —drawn and thus assumption of no loading
then violated therefore if the transfer function of this system is
obtained under the assumption of no loading then it is not valid .
The degree of the loading effect determines the amount of

modification of the transfer function.




2.11. Transfer functions of non-loading cascaded elements

The transfer function of a system consisting of two no loading
cascaded elements can be obtained by eliminating the intermediate
input and output. For example consider the system shown in
Fig.2.12.a The transfer functions of the eements are:

G(9=22) and G,(5=2X0
X X(9)

If the input impedance of the second elements is infinite, the input
of the first element is not affected by connecting it to second

element. Then transfer function of whole system becomes:
X3(8) _ X3(s) Xs(9)
Xi(s)  Xi(s) Xy(9)

G(s) =




Xy(s)

Gy 2295 69 R 5 X G g ey O

@ (b)

Fig. 2.12. (a) System consisting of two non-loading cascaded
elements; (b) an equivalent system.

The transfer function of whole system is thus the product of transfer
functions of the individua elements. This is shown in Fig.2.12.b.as
an example, consider the system shown in Fig.2.13,the insertion of
an isolating amplifier between the circuits to obtain non-loading
characteristics is frequently used in combining circuits. Since the

amplifier has very high input impedance, an isolation amplifier

\ 4




mserted between two circuits justifies the non-loading assumption.
The two simple RC circuit, isolated by an amplifier as shown m
Fig.2.13. Have negligible effects and the transfer function of the

entire circuit 1s equal to product of the individual transfer functions.

- ; E
thus m this case: o(8) _ 1 VK ( : )
E(s) RCs+1 "RC,s+l
E,(s) K - a
E(s) (RCs+D)(RC,s+1) '
Isolating
¢ C amplifier G ¢
(gain K) T




Example (5): Armature-Controlled dc motors

The dc motors have separately excited fields. They are ether
armature controlled with fixed field or field-controlled with fixed
armature current. For example, dc motors used in instruments
employ afixed permanent-magnet field, and the controlled signal is
applied to the armature terminals. Consider the armature-controlled
dc motor shown in the following Fig.2.14.

Ra = armature-winding resistance, ohms
L, = armature-winding inductance, henrys

I, = armature-winding current, amperes




I = field current, a-pares ; ea = applied armature voltage, volt

&, = back emf, volts; 6 = angular displacement of the motor shaft,
radians

T = torque delivered by the motor, Newton* meter

J = equivaent moment of inertia of the motor and load referred to
the motor shaft kg.m2

f = equivalent viscous-friction coefficient of the motor and load
referred to the motor shaft. Newton* m/rad/s
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T=Kijiy ; Where

v istheair gap flux, v = K;i, ,k; is constant
T = Kii K;i;

For aconstant field current

T =Ki,,kisamotor torque constant

8 =kyo

For constant flux




g =k —— dS ,kyis back emf constant ; The armature circuit equation is

di :
L.—2+Ri +e =¢e
adt Raa eO a

The armature current producestorque which is applied to the both
inertiaand friction to rotate the motor, hence
d 29 dS

L =T =k,
dt ot

Taking the Laplace transform of the above three equation with

assuming al initial condition is zero




E, () =K,(9)

LSl (9) + Rl a(9) + By (9) = Eo(9)
(Lis+R)1.(9+E,(9 =E.(9)

Js%0 + 0 =T =Kl (s)

(Js2+ f5)0 =T =Kl ()

The transfer function can be obtained as:

06 _ _ A Try to check this
E.(s) s(L,Js"+(L,f+RJ)s+R,f+KK,

eguation




Control Theory I Mathematical Representation of Physical Systems

Assist. Prof. Dr. Yousif Al Mashhadany 87-134




The torque T developed by the motor is proportional to the product

of the air gap flux v and armature current i, so that
T=Kijiqw, kpisconstant
T=K,i,, ko is constant

L dif+R'
— i.=e
fdt U f

2
JﬂJrf@

dt =T=kfif




Taking the Laplace transform of the above three equation with

assuming al initial condition is zero
(Lis+R)I (9 =E (9
(J?+ 1) =T =K,l; ()

The transfer function can be obtained as

0(s) _ Kz
E.(s) sS(Lis+Rs)(Js+T)

Try to check this equation

H.W. Find the transfer function e, and E
I+ () I+ (s)




2.12. Mechanical Systems:

Mechanica systems obey Newton’s law that the sum of the forces
equals zero; that is, the sum of the applied forces must be equal to
the sum of the reactive forces. The three qualities characterizing
elements in a mechanical trandation* system are mass, elastic, and
damping. The following analysis includes only linear functions.
Static friction, Coulomb friction, and other nonlinear friction terms
are not included. Basic elements entailling these qudlities are
represented as network elements, and a mechanical network is
drawn for each mechanical system to facilitate writing the

differential equations. The mass M is the inertial element. A force




applied to a mass produces an acceleration of the mass. The
reaction force fM is equal to the product of mass and acceleration
and is opposite in direction to the applied force. In terms of

displacement x, velocity v, and acceleration a, the force equation is

ae ce eeo
f,=M, =MD, = MD ?x

[v] «i B

be de fé
(@ (b) (©
Fig. 2.16. Network elements of mechanical trandate.




The network representation of mass is shown in Fig. 2.16.a.0ne
terminal, a, has the motion of the mass; and the other terminal, b, is
considered to have the motion of the reference. The reaction force
fM is a function of time and acts “through ”M. The elastance, or
stiffness, K provides a restoring force as represented by a spring.
Thus, if stretched, the string tries to contract; if compressed, it tries
to expand to its normal length. The reaction force fk on each end of
the spring is the same and is equal to the product of the stiffness K
and the amount of deformation of the spring. The network
representation of a spring is shown in Fig.16b. The displacement of
each end of the spring is measured from the original or equilibrium
position. End ¢ has a position xc, and end d has a position xd,




measured from the respective equilibrium positions. The force

eguation, in accordance with Hooke’s law, is

fK = K(Xc—Xd)

If the end d is stationary, then xd =0 and the preceding equation
reducesto: f, =Kx

The plot fk vs. xc for a rea spring is not usually a straight line,
because the spring characteristic is nonlinear. However, over a
limited region of operation, the linear approximation, i.e, a

constant value for K, gives satisfactory results.




2.12.1. Translational mechanical system:
Example (7): find the transfer function of the following system
EF =ma

F=Ky+mD’y+BDy K is spring constant.
B viscous friction coefficient

F=mD*y+BDy+ky

¥(s) _ 1
F(s) ms*+Bs+k




Example (8): Find the transfer function of the following system

1

Mass

e

FLALEL TS P

Y(s) 1

— 2 :
F =mD?y+ (B, +B,)Dy+(k +k,)V : F(s) ms?+(B,+B,)s+(k +k,)




Example (9): Find the transfer function of the following system

B o i S

F=k(¥.—Y>)

k(Y1 —Y2) = (K, +ks) Y, + (B, + B,) Dy,




Example (10): Find the transfer function of the following system

i._
F=k(n-»)=k(n—-») k, % “}
= B,D(y; ~yy) = B,Dy, o
+
k, % Y5
|
B, = Y,
+
= = S




2.12.2. Rotational mechanical systems:

Ja=>T
Where
J 1s the moment of inertia
a 1s the rotational acceleration
T 1s the toque
Example(11): Write the mathematical model of the following

system

T=JD'6+BD8

T=JDo+Bwm




Where

w=0 =D8

a=w =0 =D@

Example (12): Write the mathematical model of the following

system

T=JD6,+K(6,-6,)

K(6,-6,)=BD8, TV ™ Flexible shafi

Rigid shaft
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dh
Rc—+h=
dt ,

Taking the Laplace transform
(Res+1)H(s) = RQi(S)

So that the final transfer function will be
Ho(s) 5 R

Qi () (Res+))

According to that we can find

QO(S) 1
Q9 (Res+))
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h2 dh dnh

2 bl
R - d

Home work : Find TFs. %L

s)

2.14. Thermal Systems:

L g s /
viixel R
\\2 |levJ ?
/\+ »//
pPPP77. 7




Consider that heat input rate changes from H to H+h then heat

outflow will change from H to H +h, also the temperature of the
out following liquid will change from §_ to0 6,+6,. Considering

change only:

do
h-h =Q™
1 (0] dt

0=hR
Or

do
RO +0 = Rh
dt




Note

h,=Gel . Ge=— ; Q=Mec

By taking Laplace transform

f(s) R
Hr_(sj RQOs +1
Hlf-\.l

de :
Q;=Gcﬂf—ha

H (s) _ L 9 (<)
Qﬂ=l§.—ﬁ ; R Rl::_'h"] _"”._.HI
d R ! R

de
RO—+8=86.
er z




B(s) ___ 1
0;(s) RQs+l

In case of changesin both 6, & h; then we have :

Rc@+6 =0. + Rh.
dt I I

Where
0, : Steady state temperature of inflowing liquid, F°

0, : Steady state temperature of outflowing liquid, F°

G : steady state liquid flow rate Ib/sec.

M: mass of liquid in tank,Ib.




C: specific heat of liquid tu/lb.F°.

R: thermal resistance, Fo sec/B tu.

Q: thermal capacitance, B tu/F°.

H: Steady state heat i/p rate ,B tu/sec.




15. Extrasystems

1. ear trains

A gear train is a mechanical device that transmit energy from one
part of a system to another in such a way that force, torque ,speed
and displacement are atered. Two gears are shown coupled
together in following figure. The inertial and friction of the gears
are neglected intheidea case considered.

The relationships between the torque Ti, T, and angular
displacements o1, 62 and the teeth numbers N1, N2 of the gear train

are derived from the following facts.




1. The number of teeth on the surface of the gear is proportional

totheradiusry, r, of the gears ,that is.

ri{N2=r2 Ny




2. The distance traveled along the surface of each gear is same.
Therefore

rhei=roe:

3. The work done by one gear is equa to that of the other since

there is assume to be no loss, thus
Tie1=Tre2

If the angular velocities of the two gears are w; and o,

T,
nT, 0, N, o 1,




i

e
R
F x

V="

o {}
K

Consider linear resistance
x=kr :

. X=kR
=t v, =iR
R

w
[TETELETT

2.15.2. Potentiometer (fransducer):

WA R
*

R1X

' ut-dl-biL—Hu




2.15.3. Error Detector

V. =k6, l I

v, = k6, VL

E=k8 -k0, V. _:)H\ | '/ﬁc_‘
If k= k~k | |
E=k (6,-8,) =

2.15.4. First-Order Op-Amp:

In addition to adding and subtracting signals. op-amps can be used

to implement transfer functions of continuous-data systems. While




many alternatives are available, we will explore only those that use

the inverting op-amp configuration shown in beside Fig.

Fi1g.2.17. Inverting op-amp configuration

In the figure. Z1(s) and Z2(s) are impedances commonly composed

of resistors and capacitors. Inductors are not commonly used




because they tend to be bulkier and more expensive. Using ided
op-amp properties, the input-output relationship, or transfer

function, of the circuit shown in Fig. can be written in a number of

ways, such as
CE(S)__Z(9_ 1 Y
CO=E9 ="z zevmE =1y

Where Y1(s) = 1/Z1(s) and Y2(s)=1/Z(s) are the admittances

associated with the circuit impedances.
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The output voltageis
E.(9) =HE,(9+Ei(5)+ E(9)]
Thus the transfer function of PID operation amplifier is

——EO(S)zR—2+ +R,C s

~E() R Rcs o

&(g) = RRGRiGis™+ RRas+R
RRGS

This is transfer function of ( proportiona , integral , derivative

G(s)

)(PID) controller that will study in detailsin next time.




H.W. Find the transfer functions Eo(s)/E(s) for each the

shown in (a. b) of the below Fig.

2.16. Simulation diagram:

circuits

The simulation diagram is a term can be defined as the connection

diagram by using analogue tools to describe the differential
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One of the methods used to obtain a smulation diagram includes

the following steps:

1)Start with differential equation.

2)On the left side of the equation put the highest-order derivative
of the dependent variable. A first-order or higher-order derivative
of the input may appear in the equation. In this case the highest-
order derivative of the input is also placed on the left side of the
equation. All other terms are put on the right side.

3)Start the diagram by assuming that the signal, represented by the
terms on the left side of the equation, is available. Then integrate it




as many times as needed to obtain all the lower-order derivatives. It
may be necessary to add a summer in the smulation diagram to

obtain the dependent variable explicitly.

4) Complete the diagram by feeding back the approximate outputs

of the integrators to a summer to generate the original signal of step

2. Includethe input function if it is required.

Example (17): Draw the simulation diagram for the seriesRLC
circuit of Fig. below in which the output is the voltage across the
capacitor.

Solution:




For the series RLC shown above .the applied voltage equal to the

sum of the voltage drops when the switch 1s closed.

ViV, +Vy=e

di 1

+
I—+—[idt+iR=e nC Y|

dr ¢

Stepl. When y=V, and u=¢ we get
LCY +RCY +Y =u
Step 2. Rearrange the terms to the form

1 R 1

L i LC
¥ =bu—a¥ —b¥

Where
a— R/L. and b=1/1L.C




step3.the signa Y- is integrated twice as shown in simulink
implementation (Fig.a)
stepd. The complete block diagram can be illustrated asin Fig.b.

the state  variables are often selected as the output of the
integrators in the simulation diagram.

In this casethey are:

y=X,

Yy =X, =X1

Y = X2

The state space representation of the systemis




e ifeen

LLc]

y=[1 0]{)(1
X

€D, 11 | e — )
1 1'5_n,r _1.5 y ED

Iﬂtégratn-r InteQratﬁ,ig Out

Fig.2.19. Simulink implementation
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Input shaft position and the output shaft

r = reference input shaft, radian
C = output shaft, radian

0 = motor shaft, radian

k1 = gain of potentiometer error detector = 24/x volt/rad

ko, = amplifier gain = 10

kp, = back emf const.= 5.5*10-2 volts-sec/rad

K = motor torque constant = 6* 10-5 | b-ft-sec2




Ra=0.2Q

La= negligible

Jn = 1*10-3 Ib-ft-sec2

fm = negligble

J = 4.4*10-3 | b-ft-sec2

fL = 4*10-2 Ib-ft/rad/sec

n = gear ratio N1/N2=1/10

Hint J=JytnyJ , f = f+nofL
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3.1. Introduction

The representation of physical components by blocks is shown in
Lecture two for cach block the transfer function provides the
dynamical mathematical relationship between the inpul and output
quantities, Also. lecture one deseribe the concept of feedback.
which 15 used to achieve a better response of a control system to a
command mput. Now, the control systems represents by block
diagrams, The blocks represent the functions performed rather than
the components of the system.

3.2, Symbols used in block diagrams(B.D):

0. Block: the transfer function(IF) of the system element is
placed m the block symbolized by,




- K3

Fig.3.1, Block diagram of a TF
b. Summing points: The operation of addition or subtraction is
performed by this system element and svmbolized by.

Fig 3 2 Summung pomt notation
. Take off point: This operation is used to provide a dual mput
(1/p) or output(o/p) to a system element and 1t is represented

by, C [ akeolt pont C’




Fig 3.3 Take off notation
d. Direction arrows: this symbol defines a unidirectional flow
of the signal

Fig 3. 4. Arrow notation
¢. Cascaded rule: 11 two (or more) no load blocks m the same
direction the output as follow

HLL-.Y g L) —"—.\48) '.i_l'\"l X“E, > x‘(s.’ > Crg(s) Urfs) x“S)

K6 o K
LX) Ry

= G(5)G2(5)

= X4(s) = Xa(5)X3(S)
Xi(s) X (s)X(s)

G(s)

Fig.3.5. Cascaded rule




3.3. Variables in the Block diagram:

For the block diagram shown in Fig. below can be define the
following term. that is represents the standard control system term
m the representation of physical system in block diggram form:
Command (v): is the mput that is established by some means
external to, and independent of. the feedback control system.
Reference input (r): 1s denved from the command and s the actual
signal mput 1o the system.

Controlled variable (¢); 1s \he quantity that 1s directly measured

and controlled. 1t is the output of the controlled sy stem.




Devired or
pp— Jdesi value
| Jealtzod (4
-----------* darmh‘-----------
" 3
drnaanng o i o o o *

Reference Sened 149 Mosipsinwed  (4)  senlled sritem

bt (1) 2 rariabie (m ) pasigbly (¢) mio'u

Tdirectly
Cantrolled

wiew Z
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Actuating signal fe): 1s obtaned from a comparison measuring
device and is the reference input minus the primary feedback. This
signal, usually at a low energy level, is the input to the centrol

elements that produce the manipulated vanable

Fig.3.6. closed loop control system with all signals
Manmipulated variable(m): 1s the quantity obtamed from the control
elements that 1s apphied o the controlled svstem, The manipulated
variable 15 generally at a higher energy level than the actuating
signal and may also be modified in form.

Indirectly controlled variable (g): is the output quantity that is
related through the mdirectly controlled system 1o the controlled




variable. It 1s outside the closed loop and 1s not directly measured
for control.

Ultimately controlled variable: 1s a general term that refers to the
mdirectly controlled variable. In the absence of the indirectly
controlled variable. it refers to the controlled vartable.

ldeal value i: 1s the value of the ultimately controlled variable that
would result from an dealized system operating with (he same
command as the actual system.

Svstem errvor fve): is the ideal value mmus the value of the

ultimately controlled variable.




Disturbance (d): 1s the imwanted signal that tends 1o affect the
controlled variable, The disturbance may be mitroduced mnto the
svstem at many places.

3.4. Block Diagram reduction rules:

The rules are using in the block diagram reduction to reduce the
complex block diagram as single block diagram between mput and

outpul

Table 3.1, Rules of Block Diagram Reduction




Equation{T F)

Moving summing
point a head of 3
block

c
= R‘(Gl b4 G:)

path

Moving
F B to the forward

path




3.5. The Block Diagram Components:

produce a signal ( r ) proportional to

the command

produce the manipulated variable m from the
actuating signal.
18 the device that 8 to be controlled. This s
frequently a hagh-power element.
produces the primary feedback b from the
controlied variable, This 1s generally a proportionality device but

may also modify the characteristics of the controlled variable,




relates the indirectly eontrolled
variable ( q ) to the controlled quantity ( ¢ ). This component is
outside the feedback loop

15 one whose performance 1s agreed upon to

define the relationship bétween the ideal value and the command
This is often called the model or desired system.

denotes the functional relationship

between the varable representing the disturbance and its effect on

the control system.
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1

-
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Cr(5} 2
y(;‘ ~ —
: A+ 2

K42

Grls) =

The feed forward TF 15:

43042

Sy 10

(G ) G (3 = -
i 2 A —FeP =844

By using negative feedback rule we get

Gisym— O G,(1)

= ; - — H{(s)=1/%
I+ G (8)* G A0 {(5)

or

G (1)

Glty=—L2—.
= G, A 0)

(G AN=0,(1)3.(5)




The final TF wall be:

2857 & Sy
afe)=

P P - P [

{ Position Contirol Svstem ):
Fig.3.7 below shows a simphfied block disgram of an angular
position control system. The reference selector and the sensor,
which produce the reference inpul R=ey and the controlled output
position ¢=e,, respectively, consist of rofational potentiometers,
The combination of these units represents o rotational comparisen
umil that generates the hctuating signal E for the position ¢ontro]
svstem, as shown m Fig 3.8 where ke, in volts per radian, 15 the

potentiometer sensitivilty constanl. The svmbohe comparator for




this svstemis shown n Fig 3.9, The transfer function ol the motor-
generator control is obtained by writing the equations for the
schematic diagram shown in Fig 3.8, This figure shows a de motor
that has a constant field exettation and dnves an inertia and friction
load. The armature voltage for the motor is fumished by the
generator, which 1s driven at constant speed by a prime mover. The
generator voltage ¢, 18 determined by the voltage ef applied to the
generator lield. The generator 1s acting as a power amplhilier for the

signal voltage ¢;




Rotational - Mot-Ge

Rotational
polentiometer
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The equations that desenbed the svstem mn Fig 3.10. can be written
as:

¢ = ,'_f /.)f_, + R! {

e =€, ={L ALk +(R 4K ),
(3.3)
t‘.l - K:' l)f‘)‘.

(34)
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The transter functions ol each block, as determined m terms ol the

pertinent Laplace transforms, are as follows:
I.(s) IR, 'R,

C;J.\‘)' - = —= ‘
l:',.(.i‘) l+(L‘, "I{'. A) l+7‘.S
(r.{s5)1= h‘”):k"
' i) ¥
. {_(x) ViR, +R.) 1/
(,1](5): s - = Fs - e
E(}-8B.A8) (L +L YR +R)S 1+(L, /R IS
(7, (s)= £10) =K.
"n('”
%) ( ] |
G.(s\=("“)= B L8

sy s+(S 8).«|=s(l+Ijs)
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(1+T s K1 +Tp5)+ ’b"
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Example 5.

(G1+ HN)GIG3

1+GIHI<GIGIH 3+ GIHIH2 + GIG2G3 + GIG3H]
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GIG2G3
1-GIGIH 2+ GIG3H]

G1G2G3
1 -GIG2H 2+ GIG3H1 +GIG2G3
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% and feedback transfer function H(s)

% Type "help feedback” for more mformation

% Example |:

% Define a forward transfer function

% using the tf command

% System = tf (numerator, denonunator) Transfer function: 5/(s +5)
G=t{(|3],|15)

% Define a feedback transfer function H(s)= 1/s

% using the tf command

H =[] 1 0], % System = tf (numerator, denominator) Transfer
funcuon: 1/s

% For a non-unity, negative feedback system the




% closed loop transfer function 15

cltf = feedback (G I1-1)

YT ransfer function:3s /(872 +3s5+ 5)

% For positive feedback use "feedback (G 11,1)"

Ss/(s"2 +355-3)

% The forward transter function s caleulated by multiplying
Y% G(8) and H(s) ; G *H : Transfer function: 5 /( 872+ 5s); The
progran.

G =tf([3),11 5D

H=(f1].]1 0]

cltr = feedback (G.I1L-1)




_’ A
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L
x
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